Как построить изометрическую проекцию. Выполнение прямоугольной изометрической проекции

Прямоугольной изометрией называется аксонометрическая проекция, у которой коэффициенты искажения по всем трём осям равны, а углы между аксонометрическими осями 120. На рис. 1 представлено положение аксонометрических осей прямоугольной изометрии и способы их построения.

Рис. 1. Построение аксонометрических осей прямоугольной изометрии с помощью: а) отрезков; б) циркуля; в) угольников или транспортира.

При практических построениях коэффициент искажения (К) по аксонометрическим осям согласно ГОСТ 2.317- 2011 рекомендуют равный единице. При этом изображение получают более крупным по сравнению с теоретическим или точным изображением при коэффициентах искажения 0,82. Увеличение равно 1,22. На рис. 2 приведён пример изображения детали в прямоугольной изометрической проекции.

Рис. 2. Изометрия детали.

      Построение в изометрии плоских фигур

Задан правильный шестиугольник АВСDЕF, расположенный параллельно горизонтальной плоскости проекций Н (П 1).

а) Строим изометрические оси (рис.3).

б) Коэффициент искажения по осям в изометрии равен 1, поэтому от точки О 0 по осям откладываем натуральные величины отрезков: А 0 О 0 = АО; О 0 D 0 = ОD; К 0 О 0 = КО; О 0 Р 0 = ОР.

в) Линии, параллельные координатным осям, проводятся в изометрии также параллельно соответствующим изометрическим осям в натуральную величину.

В нашем примере стороны ВС и FЕ параллельны оси Х .

В изометрии они вычерчиваются также параллельно оси Х в натуральную величину В 0 С 0 = ВС; F 0 Е 0 = FЕ.

г) Соединяя полученные точки, получим изометрическое изображение шестиугольника в плоскости Н (П 1).

Рис. 3. Изометрическая проекция шестиугольника на чертеже

и в горизонтальной плоскости проекции

На рис. 4 представлены проекции наиболее распространенных плоских фигур в различных плоскостях проекций.

Наиболее распространённой фигурой является окружность. Изометрическая проекция окружности в общем случае представляет собой эллипс. Эллипс строят по точкам и обводят по лекалу, что в практике черчения весьма неудобно. Поэтому эллипсы заменяют овалами.

На рис. 5 построен в изометрии куб с окружностями, вписанными в каждую грань куба. При изометрических построениях важно правильно расположить оси овалов в зависимости от плоскости, в которой предполагается изобразить окружность. Как видно на рис. 5 большие оси овалов располагаются по большей диагонали ромбов, в которые спроецировались грани куба.

Рис. 4 Изометрическое изображение плоских фигур

а) на чертеже; б) на плоскости Н; в) на плоскости V; г) на плоскостиW.

Для прямоугольной аксонометрии любого вида правило определения главных осей эллипса овала, в который проецируется окружность, лежащая в какой-либо плоскости проекции, может быть сформулировано следующим образом: большая ось овала располагается перпендикулярно к той аксонометрической оси, которая отсутствует в данной плоскости, а малая совпадает с направлением этой оси. Форма и размеры овалов в каждой плоскости изометрических проекций одинаковы.

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры , расположенные горизонтально.

1. квадрата показано на рис. 1, а и б.

Вдоль оси х откладывают сторону квадрата а, вдоль оси у - половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.

Рис. 1. Аксонометрические проекции квадрата:

2. Построение аксонометрической проекции треугольника показано на рис. 2, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/ 2, а по оси у - его высоту h (для фронтальной диметрической проекции половину высоты h/2 ). Полученные точки соединяют отрезками прямых.

Рис. 2. Аксонометрические проекции треугольника:

а - фронтальная диметрическая; б - изометрическая

3. Построение аксонометрической проекции правильного шестиугольника показано на рис. 3.

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника . По оси у симметрично точке О откладывают отрезки s/2 , равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n , полученных на оси у , проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.


Рис. 3. Аксонометрические проекции правильного шестиугольника:

а - фронтальная диметрическая; б - изометрическая

4. Построение аксонометрической проекции окружности .

Фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подобных представленными на рис. 4.

Рис.4. Фронтальные диметрические проекции деталей

На рис. 5. дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями. Окружности , расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами . Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем.

Рис.5. Фронтальные диметрические проекции окружностей, вписанных в грани куба

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием .

Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 6, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 6, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 6, в).

Рис. 6. Построение фронтальной диметрической проекции детали с цилиндрическими элементами

Изометрические проекции окружностей .

Квадрат в изометрической проекции проецируется в ромб . Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 7), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.

Рис. 7. Изометрические проекции окружностей, вписанных в грани куба

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 8, а). Для этого через точку О проводят изометрические оси х и у, и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, b , с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал . Для этого из вершин тупых углов (точек А и В ) описывают дуги радиусом R , равным расстоянию от вершины тупого угла (точек А и В ) до точек a, b или с, d соответственно. От точки В к точкам а и b проводят прямые (рис. 8, б); пересечение этих прямых с большей диагональю ромба дает точки С и D , которые будут центрами малых дуг; радиус R 1 малых дуг равен Са (Db ). Дугами этого радиуса сопрягают большие дуги овала.

Рис. 8. Построение овала в плоскости, перпендикулярной оси z.

Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 7). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 9, а), а овала 2 (см. рис. 7) - на осях х и z (рис. 9, б).


Рис. 9. Построение овала в плоскостях, перпендикулярных осям х и у

Построение изометрической проекции детали с цилиндрическим отверстием .

Если на изометрической проекции детали нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани, представленное на рисунке. 10, а.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 7.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 10, а).

2. Строят ромб , сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 10, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 10, в).

4. Проводят малые дуги (рис. 10, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 10, д).


Рис. 10. Построение изометрической проекции детали с цилиндрическим отверстием

Построение аксонометрического изображения детали, чертеж которой приведен на Рис.а.

Все аксонометрические проекции должны выполняться по ГОСТ 2.317-68.

Аксонометрические проекции получаются проецированием предмета и связанной с ним системы координат на одну плоскость проекций. Аксонометрии делятся на прямоугольные и косоугольные.

Для прямоугольных аксонометрических проекций проецирование осуществляется перпендикулярно плоскости проекций, причем предмет располагается так, чтобы были видны все три плоскости предмета. Это возможно, например, при расположении осей, как на прямоугольной изометрической проекции, для которой все оси проекций располагаются под углом 120 градусов (см. рис.1). Слово «изометрическая» проекция означает, что коэффициент искажения по всем трем осям одинаковый. Согласно стандарту коэффициент искажения по осям можно принять равным 1. Коэффициент искажения – это отношение размера отрезка проекции к истинному размеру отрезка на детали, измеренного вдоль оси.

Построим аксонометрию детали. Для начала зададим оси, как для прямоугольной изометрической проекции. Начнем с основания. Отложим по оси х величину длины детали 45, а по оси у величину ширины детали 30. Из каждой точки четырехугольника поднимем верх вертикальные отрезки на величину высоты основания детали 7 (Рис.2). НА аксонометрических изображениях при нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии – параллельно измеряемому отрезку.

Далее проводим диагонали верхнего основания и находим точку, через которую будет проходить ось вращения цилиндра и отверстия. Невидимые линии нижнего основания стираем, чтобы они не мешали нашему дальнейшему построению (Рис.3)

.

Недостаток прямоугольной изометрической проекции заключается в том, что окружности во всех плоскостях будут проецироваться на аксонометрическом изображении в эллипсы. Поэтому сначала научимся строить приближенно эллипсы.

Если вписать окружность в квадрат, то у нее можно отметь 8 характерных точек: 4 точки касания окружности и середины стороны квадрата и 4 точки пересечения диагоналей квадрата с окружностью (Рис.4,а). На рис.4,в и рис.4,б показан точный способ построения точек пересечения диагонали квадрата с окружностью. На рис.4,д показан приближенный способ. При построении аксонометрические проекции половина диагонали четырехугольника, в который спроецируется квадрат, разделится в таком же соотношении.

Переносим эти свойства на нашу аксонометрию (рис.5). Строим проекцию четырехугольника, в которую проецируется квадрат. Далее строим эллипс рис.6.

Далее поднимаемся на высоту 16мм и переносим туда эллипс (Рис.7). Убираем лишние линии. Переходим к построению отверстий. Для этого строим на верху эллипс, в который спроецируется отверстие диаметром 14 (Рис.8). Далее, чтобы показать отверстие диаметром 6мм необходимо мысленно вырезать четверть детали. Для этого построим середину каждой стороны, как на рис.9. Далее строим эллипс, соответствующий окружности диаметра 6 на нижнем основании, а затем на расстоянии 14 мм от верхней части детали рисуем уже два эллипса (один соответствующий окружности диаметром 6, а другой соответствующий окружности диаметром 14) Рис.10. Далее выполняем разрез четверти детали и убираем невидимые линии (Рис.11).

Перейдем к построению ребра жесткости. Для этого на верхней плоскости основания отмеряем 3 мм от края детали и проводим отрезок длиной половине толщины ребра (1.5мм) (Рис.12), также намечаем ребро на дальней стороне детали. Угол 40 градусов нам при построении аксонометрии не подходит, поэтому рассчитываем второй катет (он будет равен 10.35мм) и по нему строим вторую точку угла по плоскости симметрии. Чтобы построить границу ребра, строим прямую на расстоянии 1.5мм от оси на верхней плоскости детали, затем проводим линии параллельно оси х до пересечения с внешним эллипсом и опускаем вертикальную прямую. Через нижнюю точку границы ребра проводим прямую параллельно ребру по плоскости разреза (Рис.13) до пересечения с вертикальной прямой. Дальше соединяем точку пересечения с точкой в плоскости разреза. Для построения дальнего ребра проводим прямую параллельную оси Х на расстоянии 1.5мм до пересечения с внешним эллипсом. Дальше находим, на каком расстоянии находится верхняя точка границы ребра (5.24мм) и такое же расстояние откладываем на вертикальной прямой с дальней стороны детали (см. Рис.14) и соединяем с дальней нижней точкой ребра.

Убираем лишние линии и штрихуем плоскости сечений. Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рис.15).

Для прямоугольной изометрической проекции линии штриховки будут параллельны линиям штриховки, показанным на схеме в правом верхнем углу (Рис.16). Осталось изобразить боковые отверстия. Для этого размечаем центры осей вращения отверстий, и строим эллипсы, как было указано выше. Аналогично строим радиусы скруглений (Рис.17). Итоговая аксонометрия показана на рис.18.

Для косоугольных проекций проецирование осуществляется под углом к плоскости проекций, отличным от 90 и 0 градусов. Примером косоугольной проекции может служить косоугольная фронтальная диметрическая проекция. Она хороша тем, что на плоскость заданную осями X и Z окружности, параллельные этой плоскости будут проецироваться в истинную величину (угол между осями X и Z 90 градусов, ось Y наклонена под углом 45 градусов к горизонту). «Диметрическая» проекция означает, что коэффициенты искажения по двум осям X и Z одинаковый, по оси Y коэффициент искажения меньше в два раза.

При выборе аксонометрической проекции необходимо стремиться, чтобы наибольшее количество элементов проецировалось без искажения. Поэтому при выборе положения детали в косоугольной фронтальной диметрической проекции ее надо расположить так, чтобы оси цилиндра и отверстий были перпендикулярны фронтальной плоскости проекций.

Схема расположения осей и аксонометрическое изображение детали «Стойка» в косоугольной фронтальной диметрической проекции приведена на рис.18.

Построение аксонометрических проекций начинают с проведения аксонометрических осей.

Положение осей. Оси фронтальной ди-метрической проекции располагают, как показано на рис. 85, а: ось х - горизонтально, ось z - вертикально, ось у - под углом 45° к горизонтальной линии.

Угол 45° можно построить при помощи чертежного угольника с углами 45, 45 и 90°, как показано на рис. 85, б.

Положение осей изометрической проекции показано на рис. 85, г. Оси х и у располагают под углом 30° к горизонтальной линии (угол 120° между осями). Построение осей удобно проводить при помощи угольника с углами 30, 60 и 90° (рис. 85, д).

Чтобы построить оси изометрической проекции с помощью циркуля, надо провести ось z, описать из точки О дугу произвольного радиуса; не меняя раствора циркуля, из точки пересечения дуги и оси z сделать засечки на дуге, соединить полученные точки с точкой О.

При построении фронтальной диметрической проекции по осям х и z (и параллельно им) откладывают действительные размеры; по оси у (и параллельно ей) размеры сокращают в 2 раза, отсюда и название "диметрия", что по-гречески означает "двойное измерение".

При построении изометрической проекции по осям х, у, z и параллельно им откладывают действительные размеры предмета, отсюда и название "изометрия", что по-гречески означает "равные измерения".

На рис. 85, в и е показано построение аксонометрических осей на бумаге, разлинованной в клетку. В этом случае, чтобы получить угол 45°, проводят диагонали в квадратных клетках (рис. 85, в). Наклон оси в 30° (рис. 85, г) получается при соотношении длин отрезков 3: 5 (3 и 5 клеток).

Построение фронтальной диметрической и изометрической проекций . Построить фронтальную диметрическую и изометрическую проекции детали, три вида которой приведены на рис. 86.

Порядок построения проекций следующий (рис. 87):

1. Проводят оси. Строят переднюю грань детали, откладывая действительные величины высоты - вдоль оси z, длины - вдоль оси х (рис. 87, а).

2. Из вершин полученной фигуры параллельно оси v проводят ребра, уходящие вдаль. Вдоль них откладывают толщину детали: для фронтальной ди-метрической проекции - сокращенную в 2 раза; для изометрии - действительную (рис. 87, б).

3. Через полученные точки проводят прямые, параллельные ребрам передней грани (рис. 87, в).

4. Удаляют лишние линии, обводят видимый контур и наносят размеры (рис. 87, г).

Сравните левую и правую колонки на рис. 87. Что общего и в чем различие данных на них построений?

Из сопоставления этих рисунков и приведенного к ним текста можно сделать вывод о том, что порядок построения фронтальной диметрической и изометрической проекций в общем одинаков. Разница заключается в расположении осей и длине отрезков, откладываемых вдоль оси у.

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры, расположенные горизонтально.

Построение аксонометрической проекции квадрата показано на рис. 88, а и б.

Вдоль оси х откладывают сторону квадрата а, вдоль оси у - половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.

Построение аксонометрической проекции треугольника показано на рис. 89, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/2, а по оси у - его высоту h (для фронтальной диметрической проекции половину высоты h/2). Полученные точки соединяют отрезками прямых.

Построение аксонометрической проекции правильного шестиугольника показано на рис. 90.

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника. По оси у симметрично точке О откладывают отрезки s/2, равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n, полученных на оси у, проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.

Ответьте на вопросы

1. Как располагают оси фронтальной диметрической и изометрической проекций? Как их строят?

В изометрической проекции все коэффициенты равны между собой:

к = т = п;

3 к 2 = 2,

k = yj 2УЗ - 0,82.

Следовательно, при построении изометрической проекции размеры предмета, откладываемые по аксонометрическим осям, умножают на 0,82. Такой перерасчет размеров неудобен. Поэтому изометрическую проекцию для упрощения, как правило, выполняют без уменьшения размеров (искажения) по осям х, у, I, т.е. принимают приведенный коэффициент искажения равным единице. Получаемое при этом изображение предмета в изометрической проекции имеет несколько большие размеры, чем в действительности. Увеличение в этом случае составляет 22% (выражается числом 1,22 = 1: 0,82).

Каждый отрезок, направленный по осям х, у, z или параллельно им, сохраняет свою величину.

Расположение осей изометрической проекции показано на рис. 6.4. На рис. 6.5 и 6.6 показаны ортогональные (а) и изометрические (б) проекции точки А и отрезка Л В.

Шестигранная призма в изометрии. Построение шестигранной призмы по данному чертежу в системе ортогональных проекций (слева на рис. 6.7) приведено на рис. 6.7. На изометрической оси I откладывают высоту Н, проводят линии, параллельные осям хиу. Отмечают на линии, параллельной оси х, положение точек / и 4.

Для построения точки 2 определяют координаты этой точки на чертеже - х 2 и у 2 и, откладывая эти координаты на аксонометрическом изображении, строят точку 2. Таким же образом строят точки 3, 5 и 6.

Построенные точки верхнего основания соединяют между собой, проводят ребро из точки / до пересечения с осью х, затем -

ребра из точек 2 , 3, 6. Ребра нижнего основания проводят параллельно ребрам верхнего. Построение точки Л, расположенной на боковой грани, по координатам х А (или у А) и 1 А очевидно из

Изометрия окружности. Окружности в изометрии изображаются в виде эллипсов (рис. 6.8) с указанием величин осей эллипсов для приведенных коэффициентов искажения, равных единице.

Большая ось эллипсов расположена под углом 90° для эллипсов, лежащих В ПЛОСКОСТИ хС>1 к ОСИ у, В ПЛОСКОСТИ у01 К ОСИ X, в плоскости хОу К ОСИ?.


При построении изометрического изображения от руки (как рисунка) эллипс выполняют по восьми точкам. Например, лоточкам 1, 2, 3, 4, 5, 6, 7 и 8 (см. рис. 6.8). Точки 1, 2, 3 и 4 находят на соответствующих аксонометрических осях, а точки 5, 6, 7 и 8 строят по величинам соответствующих большой и малой осей элипса. При вычерчивании эллипсы в изометрической проекции можно заменять овалами и строить их следующим образом 1 . Построение показано на рис. 6.8 на примере эллипса, лежащего в плоскости xOz. Из точки / как из центра, делают засечку радиусом R = D на продолжении малой оси эллипса в точке О, (строят также аналогичным образом и симметричную ей точку, которая на чертеже не показана). Из точки О, как из центра проводят дугу CGC радиуса D, которая является одной из дуг, составляющих контур эллипса. Из точки О, как из центра проводят дугу радиуса O^G до пересечения с большой осью эллипса в точках О у Проводя через точки О р 0 3 прямую, находят в пересечении с дугой CGC точку К, которая определяет 0 3 К - величину радиуса замыкающей дуги овала. Точки К являются также точками сопряжения дуг, составляющих овал.

Изометрия цилиндра. Изометрическое изображение цилиндра определяется изометрическими изображениями окружностей его основания. Построение в изометрии цилиндра высотой Н по ортогональному чертежу (рис. 6.9, слева) и точки С на его боковой поверхности показано на рис. 6.9, справа.


Предложено Ю.Б. Ивановым.

Пример построения в изометрической проекции круглого фланца с четырьмя цилиндрическими отверстиями и одним треугольным приведен на рис. 6.10. При построении осей цилиндрических отверстий, а также ребер треугольного отверстия использованы их координаты, например координаты х 0 и у 0 .