Современные системы теплоснабжения. Системы теплоснабжения

Байбаков С. А., инженер ОАО «ВТИ»

1. Существующее положение и проблемы.

В связи с особенностями климатических условий бесперебойное обеспечение населения и промышленности тепловой энергией в России является актуальной социальной и экономической проблемой. По данным различных источников для целей теплоснабжения в 2000 г. было произведено примерно 2020 млн.Гкал. На это было затрачено свыше 45% от общего потребления всех видов топлива, что примерно в 2 раза больше, чем расход топлива на нужды электроэнергетики и соответствует топливоемкости всех остальных отраслей экономики.

В настоящее время отпуск тепла потребителям крупных населенных пунктов в основном производится и будет производится в дальнейшем от достаточно мощных систем централизованного теплоснабжения (СЦТ), имеющих в качестве источников тепла крупные ТЭЦ или районные котельные.

Значительная часть потребностей в тепловой энергии в нашей стране, и особенно в городах, имеющих высокую концентрацию тепловых нагрузок, традиционно обеспечивается за счет крупных СЦТ на основе паротурбинных ТЭЦ с теплофикационными турбинами различной мощности, т.е. имеет место широкое использование теплофикации, использование которой объективно позволяет получить существенную экономию органического топлива. Так комбинированная выработка тепловой и электрической энергии в России по различным источникам позволяет экономить от 20 до 30% топлива по сравнению с раздельной выработкой.

В современных условиях развитие теплофикации и систем теплоснабжения на ее основе стало испытывать конкуренцию со стороны децентрализованных схем и раздельной выработки тепловой и электрической энергии, обусловленную следующими обстоятельствами.

КПД электростанций с конденсационными турбинами значительно увеличился и достигает 40 - 43%. Вместе с тем удалось повысить КПД отопительных котельных, величина которого превышает КПД энергетических котлов ТЭЦ, а КПД использования топлива малых котельных практически может достигать 100%. Все это приводит к снижению относительной экономии топлива при теплофикации. Кроме того, развитие теплофикации требует значительных начальных затрат, а срок окупаемости при создании крупных ТЭЦ составляет около десяти лет. В современных экономических условиях это положение с учетом фактора мобильности объективно приводит к переходу на теплоснабжение от быстроокупаемых, автоматизированных и высокоэкономичных котельные различной мощности, включая крышные и домовые котельные установки заводской готовности, не смотря даже на то, что удельные капитальные затраты для таких котельных значительно выше аналогичного показателя для ТЭЦ.

Одной из основных проблем при традиционной схеме СЦТ является фактор надежности теплоснабжения. Как уже отмечалось, принятое расположение базовых и пиковых источников тепла, разработка режимов отпуска тепла и величины параметров сетевой воды определялись без учета этого фактора. В результате сложилась следующая ситуация.

Концентрация тепловой мощности и радиально-тупиковая структура тепловых сетей имеет весьма ограниченные возможности по резервированию тепловой мощности источников тепла. Аварийные переброски тепла могут производится в основном по концевым участкам тепловых сетей, имеющих малую пропускную способность. В соответствии с этим аварийные ситуации на источнике тепла или на головных участках магистралей тепловых сетей могут привести к значительному и длительному снижению подачи тепла потребителям.

Для повышения надежности теплоснабжения на источнике тепла предусматриваются возможность использования резервного теплогенерирующего оборудования (паровых теплообменников) с подачей пара из станционных паровых коллекторов или из отборов с более высокими параметрами пара и секционирование коллекторов теплофикационных установок ТЭЦ.

В тепловых сетях повышение надежности теплоснабжения обеспечивается различными способами резервирования и дублирования трубопроводов, что приводит к удорожанию тепловых сетей и усложнению их схем. При протяженных магистральных тепловых сетях повышение надежности обеспечивается секционированием магистральных трубопроводов, прокладкой нескольких ниток трубопроводов с меньшим диаметром и организацией перемычек между ними. Кроме того, предусматривается подключение потребителей к трубопроводам перемычек между соседними магистралями, обеспечивая тем самым возможность двусторонней подачи тепла.

Другим фактором, отрицательно сказывающимся на надежность тепловых сетей является использование достаточно высокого температурного графика 150/70 о С. При этом графике на 1 о С изменения температуры наружного воздуха приходится примерно 3.0 о С изменения температуры сетевой воды в подающей линии. Соответственно при возможных относительно быстрых внутрисуточных изменениях погодных условий, связанных с повышением или понижением температуры воздуха в отопительном периоде на 7-10 о С требуется изменение температуры в подающей линии на 21-30 о С. При этом изменения температуры воздуха и, соответственно, воды в трубопроводах как правило носят циклический характер.

В этих условиях опыт эксплуатации в качестве меры по повышению надежности предусматривает применение срезки температурного графика на максимальную температуру 120-130 о С, что приводит к недоотпуску тепла на отопление. При установке же на тепловых пунктах потребителей с независимой схемой присоединения отопления регуляторов нагрузки (температуры воды в контуре отопления) использование срезки температурного графика может привести к значительному увеличению расходов воды в тепловой сети и существенному изменению (усложнению) гидравлического режима тепловых сетей.

Снижение привлекательности получения тепла от систем теплоснабжения с использованием теплофикации приводит к отключению потребителей и их переходу на другие источники тепловой энергии. При этом объемы производства падают и тарифы на тепловую энергию для остальных потребителей возрастают.

В целях повышения привлекательности теплоснабжения на базе теплофикации необходимо предпринять организационные и технические меры по повышению надежности и экономичности производства и транспорта тепла, позволяющие продуманно и комплексно решать имеющиеся проблемы с учетом ожидаемого роста тепловых нагрузок существующих систем и изношенности основного оборудования, и в особенности установленных на ТЭЦ пиковых котлов.

Вместе с тем, как следует из опубликованных материалов по зарубежному опыту организации теплоснабжения, в настоящее время в Европейских странах (Дания, Германия) получило широкое распространение создание крупных систем централизованного теплоснабжения на базе параллельного подключения к общей тепловой сети нескольких источников различной мощности с комбинированной выработкой тепловой и электрической энергии (МиниТЭЦ, ПГУ ТЭЦ, ГТУ ТЭЦ).

Такой подход обусловлен значительной экономией топлива, получаемой при использовании теплофикации и возможностью наиболее эффективно решать экологические проблемы при сжигании органического топлива. При этом регулирование отпуска тепла в рассматриваемых системах производится в соответствии с графиком количественно-качественного регулирования при максимальной расчетной температуре в подающей линии на уровне 110 - 130 о С. Нормальная работа систем теплоснабжения в этих условиях возможна только при условии полной автоматизации потребителей тепловой энергии.

2. Анализ имеющихся предложений по структуре и схемам СЦТ.

Современные СЦТ представляют собой сложный инженерный комплекс из источников тепловой энергии (основных и пиковых) и потребителей тепла, связанных между собой тепловыми сетями различного назначения и балансовой принадлежности, имеющими характерные тепловые и гидравлические режимы с заданными параметрами теплоносителя. Величина параметров и характер их изменения определяются техническими возможностями основных структурных элементов систем теплоснабжения (источников, тепловых сетей и потребителей), экономической целесообразностью и, в немалой степени, наработанным опытом создания и эксплуатации таких систем.

В последнее время повышению эффективности комбинированной выработки тепловой энергии и систем теплоснабжения на ее основе уделяется пристальное внимание. Многими авторами и организациями разработаны различные предложения по возможным направлениям изменения структурных схем таких систем. При этом речь идет не о применении нового оборудования, каким является например использование для теплофикации парогазовых циклов, что само по себе позволяет повысить экономичность теплоснабжения, а именно о разработке нетрадиционных схем систем теплоснабжения в целом, в которых преимущества комбинированного производства тепловой энергии используются в наибольшей степени.

Одним из таких предложений является хорошо известное из технической литературы /1/ предложение д.т.н. Андрющенко А. И., суть которого заключается в переходе на централизованную подачу от ТЭЦ тепла только на горячее водоснабжение с его отпуском в районы теплопотребления по однотрубной схеме. При этом нагрузка отопления обеспечивается расположенными непосредственно в районах теплопотребления пиковыми источниками с различным составом теплогенерирующего оборудования и соответствующими тепловыми сетями. Подача воды и тепла от ТЭЦ в двухтрубные районные тепловые сети производится в виде их подпитки для компенсации непосредственного водоразбора на горячее водоснабжение в районных сетях, осуществляемого по открытой схеме.

Использование такой схемы СЦТ позволяет повысить эффективность комбинированной выработки за счет снижения температуры отвода тепла от теплофикационных отборов турбин при стабильной их годовой загрузке по отпуску тепла.

Однако системы теплоснабжения с подобной структурой очевидно могут применяться при полностью новом строительстве, а также при реорганизации схемы теплоснабжения предусматривающей использование или загородной КЭС или новой ТЭЦ с подачей тепла в существующие районные тепловые сети, у которых в качестве источников тепла используются городские квартальные котельные. Т.е. использование рассматриваемого предложения требует специальной организации системы, характеризующейся концентрацией значительной нагрузкой горячего водоснабжения и строительства тепловых сетей для ее передачи в районы теплопотребления.

Предлагаемая схема не может быть использована для сложившихся систем теплоснабжения городов на базе крупных ТЭЦ исходя из практической невозможности перноса нагрузки горячего водоснабжения на один из источников. Кроме того, при использовании открытых схем горячего водоснабжения следует учитывать необходимость создания соответствующей водоподготовки большой производительности и наличия исходной воды определенного качества.

Несколько вариантов изменения схем подключения пиковых источников в системах теплоснабжения и условиям работы тепловых сетей приведено авторами из Уляновского ГТУ в монографии /2/.

В основном можно рассматривать два предложения.

В первом из них предлагается подключать пиковые котельные на ТЭЦ параллельно сетевым подогревателям и перевести работу тепловых сетей на пониженный температурный график с использованием центрального количественного или качественно-количественного регулирования.

По этому поводу следует сказать, что при современных схемах автоматизации тепловых пунктов центральное изменение расхода воды на теплоисточнике невозможно, поскольку расход воды определяется регуляторами у потребителя тепла. Кроме того, вызывает сомнения возможность соблюдения ограничений по допустимым расходам воды через сетевые подогреватели турбин при значительных изменениях расходов в тепловых сетях, что может потребовать отключение турбин по отпуску тепла с их работой в чисто конденсационном режиме.

Кроме того, для существующих систем теплоснабжения непосредственный переход на пониженный температурный график также не возможен, поскольку при той же тепловой нагрузке значительно возросший расход сетевой воды не может быть пропущен по тепловым сетям с прежними диаметрами трубопроводов.

Во втором предложении рассматривается возможность перехода на полную децентрализацию установок пиковой мощности систем теплоснабжения с ее производством непосредственно у потребителей. Это предложение также вряд ли экономически обосновано по суммарным затратам в систему теплоснабжения, хотя и позволяет по словам авторов получить значительную экономию топлива.

Так в качестве пиковых источников предлагается использовать или электронагреватели или домовые газовые котельные. Все это вместе будет очевидно значительно дороже, чем реконструкция пиковой водогрейной котельной на ТЭЦ, поскольку потребует перекладки или электросетей или газопроводных труб. Кроме того, использование электроэнергии для целей отопления, как показывает предыдущий опыт, позволяет получить экономические преимущества лишь при наличии избытка дешевой электроэнергии, производимой например на ГЭС.

Режимы работы тепловых сетей при предлагаемых схемах авторами практически не рассматриваются.

Одним из последних по времени высказано предложение коллектива авторов из Белорусии (Шкода А. Н. и др.), заключающееся в переходе при теплоснабжении от ТЭЦ на трехтрубные схемы тепловых сетей с раздельной подачей тепла на отопление и горячее водоснабжение /3/. При этом на ТЭЦ нагрузка горячего водоснабжения обеспечивается в основном за счет использования теплофикационного пучка конденсатора и отбора нижней ступени, а подача тепла на отопление производится из верхних теплофикационных отборов.

Предложенный вариант схемы системы теплоснабжения имеет ряд преимуществ. Повышается КПД турбины за счет ликвидации чисто вентиляционного пропуска и выработка электроэнергии на тепловом потреблении при снижении параметров отвода тепла из цикла. При этом улучшаются режимы эксплуатации тепловых сетей отопления за счет стабилизации гидравлического режима и обеспечения возможности снижения температуры воды в подающей линии при положительных температурах воздуха в соответствии с отопительным графиком, связанной с отсутствием необходимости излома температурного графика. Использование аккумулирующих емкостей по горячему водоснабжению, устанавливаемых в районах теплопотребления, позволяет также иметь стабильный гидравлический и тепловой режим в трубопроводах системы горячего водоснабжения от ТЭЦ.

Для приведенной схемы СЦТ необходима установка на ТЭЦ оборудования по подготовке воды на горячее водоснабжение, и кроме того, применение такой схемы в действующих системах практически не возможно реализовать, поскольку почти для всех тепловых сетей от ТЭЦ требуется дополнительная прокладка трубопроводов сетей горячего водоснабжения. Предлагаемую схему можно рассматривать как вариант при создании новых централизованных систем теплоснабжения.

В приведенных работах подробно рассматривается в основном непосредственно источники тепла (теплофикационное оборудование турбин и пиковых котельных) и повышение экономичности при выработке тепла, но недостаточно внимания уделяется условиям и режимам работы присоединенных тепловых сетей и потребителей тепловой энергии, а также вопросам создания целостных систем на основе предлагаемых вариантов. В особенности это касается возможностей использования приведенных предложений для использования в уже сложившихся СЦТ с традиционной схемой.

Однако наличие указанных выше проблем при централизованном теплоснабжении и возможный рост тепловых нагрузок в городах потребует поставить вопрос о целесообразности их реконструкции и модернизации. При этом имеющиеся проблемы надо решать в комплексе, с учетом существующих условий и возможных режимов работы тепловых сетей и потребителей.

3. Предложения по изменению схем существующих СЦТ.

В качестве основных направлений для достижения поставленных выше целей следует в первую очередь рассматривать предложения позволяющие осуществить возможную децентрализацию источников тепла и снижение температурного графика тепловых сетей.

Для систем теплоснабжения с традиционной структурой снижение температурного графика тепловых сетей является дорогостоящей и трудновыполнимой задачей. Это определяется в основном возможностями регулирования подачи тепла на отопление в тепловых пунктах потребителей и принятыми при проектировании тепловых сетей диаметрами трубопроводов.

Ниже предлагается возможный вариант изменения структуры эксплуатирующихся в настоящее время СЦТ, осуществление которого позволит с наименьшими затратами обеспечить выполнение указанных условий.

Предлагается провести реконструкцию системы теплоснабжения, перенося пиковые источники тепла с ТЭЦ в районы теплопотребления. При этом требующие реконструкции пиковые котлы на ТЭЦ демонтируются, а новые пиковые источники тепла оборудуются на тепловых сетях всех крупных выводов ТЭЦ и подключаются к существующим магистралям в промежуточных точках. Принципиальная схема системы теплоснабжения при таком переносе пиковых источников приведена на рис. 1, на котором приведена также изначальная схема СЦТ (рис. 1 а) с традиционной структурой.

В качестве пиковых источников могут использоваться водогрейные котлы, а также различные другие типы теплогенерирующего оборудования, включая ПГУ или ГТУ ТЭЦ. Выбор типа пикового источника в общем случае определяется на основании результатов технико-экономических расчетов.

Перенос пиковых источников в районы теплопотребления разбивает тепловые сети с присоединенными потребителями на две зоны: зону между ТЭЦ и точкой подключения пикового источника (зона ТЭЦ); и зону после пикового источника (зону пиковой котельной). При этом в обеих зонах могут поддерживаться различные температурные (температурные графики) и соответствующие гидравлические режимы. Как это показано на рис.1, включение пиковых источников по сетевой воде может производится как последовательно с теплофикационным оборудованием ТЭЦ, так и параллельно оборудованию ТЭЦ. Каждая из схем подключения имеет свои преимущества или недостатки.

При последовательном подключении через пиковый источник будет проходить большой расход воды с относительно высокой температурой перед источником, что имеет значение при использовании водогрейных котлов. Такая схема предусматривает подачу тепла только в зону пикового источника при отсутствии возможности выдачи тепловой мощности в зону ТЭЦ.

При параллельном подключении через пиковый источник проходит сниженный расход с температурой обратной линии на входе, но при этом имеется возможность подачи воды и тепла в тепловые сети зоны ТЭЦ, обеспечивая тем самым возможность резервирования тепловой мощности ТЭЦ. На пиковом источнике при этом устанавливается насос смешения.

В реальных условиях может одновременно использоваться как параллельное, так и последовательное присоединение пиковых источников. Выбор конкретных схем определяется гидравлическими характеристиками существующих тепловых сетей и необходимыми условиями резервирования.

Предлагаемое изменение структуры системы теплоснабжения позволяет снизить тепловую мощность, отпускаемую непосредственно от ТЭЦ до уровня мощности теплофикационного оборудования турбин. При этом условии по существующим трубопроводам без изменения диаметра может быть пропущен прежний расход воды, что обуславливает возможность перехода в зоне ТЭЦ на пониженный температурный график.

Протяженность тепловых сетей после пикового источника сравнительно меньше общей протяженности сети изначальной системы, что позволяет допустить большие потери давления (напора) при условии обеспечения прежнего располагаемого напора у наиболее удаленных потребителей. В соответствии с этим в сетях после пикового источника также возможно перейти на пониженный график с увеличенными расходами сетевой воды.

Предлагаемая структурная схема СЦТ приводит к децентрализации источников тепла с возможностью их взаимного резервирования и одновременно позволяет перейти на пониженный температурный график в тепловых сетях, что должно обеспечить повышение надежности теплоснабжения. Переход на предлагаемую структурную схему СЦТ потребует только доведения до необходимого уровня автоматизацию тепловых пунктов потребителей.

Кроме указанных преимуществ, предлагаемая схема позволяет увеличивать присоединенную нагрузку и мощность системы теплоснабжения по отдельным направлениям тепловых сетей за счет наращивания мощности пиковых источников, не изменяя диаметры трубопроводов остальной сети и характеристики других источников тепла, входящих в СЦТ.

Следует отметить, что гидравлические и тепловые режимы тепловых сетей и источников тепла кроме прочих условий зависят также от места подключения пикового источника к тепловой сети, т.е. от удаления подключаемого пикового источника от ТЭЦ.

В качестве примера определения показателей режимов и оценки основных условий реконструкции СЦТ были рассмотрены требуемые параметры и режимы работы при изменении схемы системы централизованного теплоснабжения с условной расчетной тепловой нагрузкой потребителей 1 Гкал/ч.

К изначальной тепловой сети присоединены потребители только с нагрузкой отопления при расчетной температуре в помещениях +18 о С. При этих условиях и температурном графике традиционной схемы 150/70 о С расход воды в сети постоянен и равен 12.5 т/ч.

Принималось, что коэффициент теплофикации для изначальной традиционной схемы равен 0.5, т.е. из теплофикационных отборов турбин покрывается половина расчетной нагрузки системы. Другую половину обеспечивает пиковая котельная. График покрытия тепловой нагрузки системы теплоснабжения в зависимости от температуры наружного воздуха (относительной нагрузки отопления), принятый исходя из условия максимальной загрузки по теплу теплофикационных турбин ТЭЦ приведен на рис. 2

Рис. 2 График покрытия тепловой нагрузки системы теплоснабжения.

Для предварительного анализа будем считать, что присоединение тепловой нагрузки распределено равномерно по тепловой сети, которая представляет собой одну тупиковую магистраль переменного по длине сети диаметра. Общая относительная протяженность сети равна 1.

Схемы изначальной системы теплоснабжения и системы после переноса пикового источника (пиковой котельной) в район теплопотребления приведены на рис. 3. На этом же рис. приведены используемые в дальнейшем условные обозначения основных параметров режимов СЦТ.

а. Начальная (традиционная) схема СЦТ

б. Преобразованная схема СЦТ

Рис. 3 Схема преобразования СЦТ и условные обозначения.

Условные обозначения:

1 - Теплофикационное оборудование ТЭЦ

2 - Пиковый источник (пиковая котельная)

Для оценки изменения гидравлических режимов системы теплоснабжения было принято, что в тепловой сети при традиционной схеме имеет место линейное изменение напора по длине трубопроводов. При этом относительный располагаемый напор на ТЭЦ при традиционной схеме равен 1, а устойчивость сети (отношение располагаемого напора на абонентском вводе к располагаемому напору на ТЭЦ) составляет 0.2, т.е. располагаемый напор у последнего потребителя равен 20% от развиваемого напора на ТЭЦ.

По результатам проведенных расчетов будет в основном показана техническая возможность реализации переноса пикового источника в район теплопотребления и рекомендуемые при этом режимы работы системы теплоснабжения. Следует учитывать также, что выбор основных параметров и решений (соотношение мощностей, место расположения пикового источника, принимаемые температурные графики и т.д.) очевидно определяется не только чисто техническими, но и технико-экономическими условиями. В предлагаемом материале технико-экономические условия не рассматриваются.

Для новой системы теплоснабжения принят тот же график покрытия суммарной тепловой нагрузки системы, что и для изначальной сети, который приведен на рис. 2, т е. пиковый источник обеспечивает при расчетных условиях половину нагрузки и коэффициент теплофикации для СЦТ в целом остается равным 0.5.

Будем считать, что для потребителей, подключенных к сети после перенесенного пикового источника (зона ПК) принимается отопительный температурный график 130/70 о С. Для потребителей зоны ТЭЦ расчетный температурный график принят более низким исходя из возможности теплофикационных отборов турбин и равным 120/70 о С.

При условии автоматизации тепловых пунктов потребителей температура в обратной линии сети при реконструкции не изменится и останется равной этой температуре для исходной тепловой сети.

Возможная точка подключения пикового источника к тепловым сетям при принятых условиях определяется гидравлическим режимом исходной системы и условиями получаемых гидравлических режимов при переносе пикового источника, для которых должно быть выполнено требование обеспечения преждних располагаемых напоров на присоединенных потребителях.

Как показали проведенные расчеты теплогидравлических режимов преобразованной системы теплоснабжения наиболее близкая к ТЭЦ точка подключения пикового источника при условии обеспечения заданных располагаемых напоров у присоединенных потребителей составляет 60% от общей протяженности первоначальной тепловой сети, т.е удалена на 0.6 относительных единиц общей протяженности сети от ТЭЦ. При этом, расчетная тепловая нагрузка потребителей зоны ТЭЦ составит 0.6 Гкал/ч, а зоны пиковой котельной 0.4 Гкал/ч.

Для СЦТ после реконструкции сохраняется исходный график покрытия суммарных тепловых нагрузок системы. Однако графики покрытия нагрузок зон ТЭЦ и пиковой котельной для условий рис. 2 имеют более сложный характер.

График покрытия тепловых нагрузок потребителей зоны ТЭЦ в зависимости от относительной нагрузки отопления приведен на рис. 4, график покрытия тепловых нагрузок потребителей зоны пиковой котельной - на рис. 5

На рис. 4 показаны графики изменения нагрузки потребителей зоны ТЭЦ и отпуска тепла от ТЭЦ. Приведен также график подачи тепла от ТЭЦ в зону пикового источника (в зону ПК). Последний, при относительных нагрузках больших 0.83 (при низких температурах наружного воздуха) имеет отрицательные значения, что говорит о необходимости подачи тепла в зону ТЭЦ от пикового источника.

На рис 5 приведены графики нагрузки потребителей зоны ПК и отпуска тепла от пикового источника. На этом же рис. показан также график подачи тепла в зону ПК от ТЭЦ, который при относительных нагрузках больших 0.83 имеет отрицательные значения, свидетельствующие, как уже отмечалось, о подаче тепла от пикового источника в зону ТЭЦ.

Температурные графики СЦТ для зоны ТЭЦ и пиковой котельной приведены на рис. 6, на котором для сравнения показан также температурный график исходной СЦТ.

Как следует из рис. 6, температурный график от ТЭЦ преобразованной системы теплоснабжения имеет сложную зависимость от температуры наружного воздуха. Максимальная температура при расчетных условиях соответствует, как указывалось ранее 120 о С, а минимальная температура сетевой воды от ТЭЦ в точке начала (окончания) отопительного периода принята равной 70 о С. Рассматриваемый график имеет точку излома при относительной нагрузке равной 0.5, соответствующей точке включения пиковой котельной. Температура в этой точке определяет наибольший расход воды в трубопроводах зоны ТЭЦ, передаваемый в зону ПК, что обуславливает наиболее напряженный гидравлический режим зоны ТЭЦ и системы теплоснабжения в целом. Температура в точке излома определялась исходя из условий обеспечения необходимых гидравлических условий для присоединенных потребителей при принятой точке подключения переносимого пикового источника.

Следует отметить, что уровень температур в подающей линии от теплофикционной части ТЭЦ определяет эффективность комбинированной выработки тепловой и электрической энергии и чем он ниже, тем выше удельная комбинированная выработка.

Соответствующие приведенным выше данным по температурам в различных частях схемы СЦТ при принятой точке переноса пикового источника графики расходов воды в зависимости от относительной нагрузки отопления (температуры наружного воздуха) на различных участках схемы системы теплоснабжения приведены на рис.7. Для сравнения на рисунке приведен требуемый график расхода сетевой воды от ТЭЦ для исходной системы теплоснабжения при температурном графике 150/70 о С.

Как следует из рис. 7 расход воды от ТЭЦ в реконструируемой системе теплоснабжения существенно ниже изначального значения в 12.5 т/ч и возрастает при понижении температуры наружного воздуха от 6.5 до 10.0 т/ч. Расход воды через пиковый источник при понижении температуры воздуха сначала снижается от 4.1 до 3.6 т/ч и далее возрастает до максимального значения при расчетных условиях, равного 8.7 т/ч.

Так же как и при отпуске тепла, в реконструируемой СЦТ имеют место перетоки воды между зоной ТЭЦ и зоной ПК. Расходы воды по зонам приведены на рис. 8 и 9.

На рис.8 приведены график суммарного расхода воды для потребителей зоны ТЭЦ, график расхода воды от ТЭЦ и график подачи воды в зону ТЭЦ от пикового источника. Последний имеет отрицательные значения для относительных нагрузок менее 0.83 и показывает, что при этих относительных нагрузках имеет место подача воды из трубопроводов зоны ТЭЦ (от ТЭЦ) на пиковый источник.

На рис. 9 приведены графики расходов воды в зоне пикового источника, а также графики расходов воды для потребителей зоны ПК, расхода воды через пиковый источник и расходов воды от ТЭЦ в зону ПК. При этом максимальное значение расхода воды, подаваемого от ТЭЦ на пиковый источник отмечается при относительной нагрузке, равной 0.5 и соответствующей точке включения пиковой котельной. Величина этого расхода составляет 3.3 т/ч.

По приведенным выше данным о расчетном гидравлическом режиме исходной сети и условиях подключения тепловой нагрузки были проведены расчеты гидравлических режимов и построены пьезометрические графики реконструируемой сети для характерных относительных нагрузок (температур наружного воздуха), приведенные на рис. 10.

На рис. показаны пьезометрические графики при расчетной температуре наружного воздуха, при наиболее напряженном гидравлическом режиме, соответствующем относительной нагрузке в точке начала работы пикового источника и, для сравнения, пьезометрический график тепловой сети исходной системы теплоснабжения. Как следует из рис. 10 требования по гидравлическим режимам для преобразованной СЦТ (требования по располагаемым напорам присоединенных потребителей) выполняются при всех режимах.

Полученные результаты расчетов показывают возможность технической реализации предлагаемого изменения схемы СЦТ, при этом результаты приведены для одного из возможных вариантов. Для принятых условий изменения схемы возрастают затраты на перекачку теплоносителя и ухудшаются показатели удельной комбинированной выработки тепловой энергии, поскольку отпуск тепла от теплофикационного оборудования ТЭЦ производится при более высоких температурах в подающей линии тепловой сети зоны ТЭЦ, чем для исходной схемы СЦТ. Однако для измененной схемы системы теплоснабжения снижется уровень максимальных температур в подающей линии, что вместе с децентрализацией источников тепла позволит повысить надежность теплоснабжения при некотором снижении его экономичности.

Технико-экономические показатели рассмотренного выше варианта реконструкции СЦТ при заданных расчетных температурных графиках определяются принятой точкой присоединения к тепловой сети пикового источника тепла. Так удаление точки подключения пикового источника от ТЭЦ приводит улучшению показателей гидравлических режимов, а именно к увеличению располагаемых напоров в тепловой сети. Это обстоятельство позволяет или увеличить расход воды от ТЭЦ при снижении температуры в подающей линии зоны ТЭЦ и улучшить тем самым показатели комбинированной выработки тепловой и электрической энергии, или снизить располагаемые напоры на ТЭЦ и пиковом источнике, снижая дополнительный расход электроэнергии на перекачку теплоносителя. При этом следует учитывать также изменение тепловых потерь в тепловых сетях, связанное с изменением температурного режима тепловых сетей

Выбор основных параметров изменяемой схемы СЦТ является результатом технико-экономических оптимизационных расчетов и в предлагаемом материале не рассматривается.

4. Выводы.

1. Существующие развитые системы централизованного теплоснабжения на базе крупных городских ТЭЦ с традиционной схемой компоновки требуют реконструкции, как по используемому оборудованию, так и по структурным схемам. Такая реконструкция должна приводить в первую очередь к повышению надежности теплоснабжения и обеспечению возможностей по увеличению присоединяемой нагрузки.

2. Приведенные в современной технической литературе предложения по изменению схем систем теплоснабжения вызывают ряд замечаний. Большая часть этих предложений позволяет повысить эффективность использования комбинированной выработки но практически малоприменимы для действующих СЦТ из-за значительных затрат на их реализацию, связанных в основном с тепловыми сетями. Другие предложения требуют комплексного анализа и проведения дополнительных расчетов по режимам отпуска тепла и параметрам теплоносителя в различных точках схем с определением общих затрат на создание и эксплуатацию таких систем.

3. Предлагаемая в статье схема реконструкции традиционных систем теплоснабжения, связанная с переносом пиковых источников в район теплопотребления и их подключением к существующим магистралям тепловых сетей технически реализуема и позволяет повысить надежность теплоснабжения за счет улучшения условий резервирования и перехода на пониженные температурные графики. При этом не требуется перекладка тепловых сетей, а необходимо лишь доведение автоматизации схем присоединения тепловой нагрузки потребителей до современного уровня.

Список литературы

1. Андрющенко А. И. Комбинированные системы теплоснабжения. // «Теплоэнергетика». 1997. №5. С. 2-6.

2. Шарапов В. И., Орлов М. Е. Технологии обеспечения пиковой нагрузки систем теплоснабжения.М.: Издательство «Новости теплоснабжения», 2006.-208с.; ил.

3. Шкода А. Н., Шкода В. Н., Кухарчик В. М. Совершенствование технологий комбинированного теплоснабжения. «Электрические станции». 2008. №10. С 16-17.

Министерство образования и науки

ГОУ ВПО «Братский государственный университет»

Факультет энергетики и автоматики

Кафедра промышленной теплоэнергетики

Реферат по дисциплине

«Теплогазоснабжение и вентиляция»

Современные системы теплоснабжения

Перспективы развития

Выполнила:

Ст группы ТГВ-08

Н.А. Снегирева

Руководитель:

Профессор, к.т.н., кафедры ПТЭ

С.А. Семенов

Братск 2010

Введение

1. Виды систем центрального отопления и принципы их действия

4.2 Газовое отопление

4.3 Воздушное отопление

4.4 Электрическое отопление

4.5 Трубопроводы

4.6 Котельное оборудование

5. Перспективы развития теплоснабжения в России

Заключение

Список использованной литературы

Введение

Проживая в умеренных широтах, где основная часть года холодная, необходимо обеспечить теплоснабжение зданий: жилых домов, офисов и других помещений. Теплоснабжение обеспечивает комфортное проживание, если это квартира или дом, продуктивную работу, если это офис или склад.

Сначала разберёмся, что же понимают под термином «Теплоснабжение». Теплоснабжение - это снабжение систем отопления здания горячей водой либо паром. Привычным источником теплоснабжения являются ТЭЦ и котельные. Существует два вида теплоснабжения зданий: централизованное и местное. При централизованном – снабжаются отдельные районы (промышленные или жилые). Для эффективной работы централизованной сети теплоснабжения, её строят, разделяя на уровни, работа каждого элемента заключается в выполнении одной задачи. С каждым уровнем задача элемента уменьшается. Местное теплоснабжение – снабжение теплом одного или несколько домов. Централизованные сети теплоснабжения имеют ряд преимуществ: снижение расходов топлива и сокращение затрат, использование низкосортного топлива, улучшение санитарного состояния жилых районов. Система централизованного теплоснабжения включает в себя источник тепловой энергии (ТЭЦ), тепловой сети и теплопотребляющих установок. ТЭЦ комбинированно вырабатывает тепло и энергию. Источниками местного теплоснабжения являются печи, котлы, водонагреватели.

Системы теплоснабжения отличаются различными температурами и давлением воды. Это зависит от требований потребителей и экономических соображений. При увеличении расстояния, на которое необходимо «передать» тепло, увеличиваются экономические затраты. В настоящее время расстояние передачи тепла измеряется десятками километров. Системы теплоснабжения делятся по объёму тепловых нагрузок. Системы отопления относят к сезонным, а системы горячего водоснабжения – к постоянным.


1. Виды систем центрального отопления и принципы их действия

Централизованное теплоснабжение состоит из трех взаимосвязанных и последовательно протекающих стадий: подготовки, транспортировки и использования теплоносителя. В соответствии с этими стадиями каждая система состоит из трех основных звеньев: источника теплоты(например, теплоэлектроцентрали или котельной), тепловых сетей(теплопроводов) и потребителей теплоты.

В децентрализованных системах теплоснабжения каждый потребитель имеет собственный источник теплоты.

Теплоносителями в системах центрального отопления могут быть вода, пар и воздух; соответствующие системы называют системами водяного, парового или воздушного отопления. Каждая из них имеет свои достоинства и недостатки. теплоснабжение центральный отопление

Достоинствами системы парового отопления являются значительно меньшие ее стоимость и расход металла по сравнению с другими системами: при конденсации 1 кг пара освобождается примерно 535 ккал, что в 15-20 раз больше количества тепла, выделяющегося при остывании 1 кг воды в нагревательных приборах, и поэтому паропроводы имеют значительно меньший диаметр, чем трубопроводы системы водяного отопления. В системах парового отопления меньше и поверхность нагревательных приборов. В помещениях, где люди пребывают периодически (производственные и общественные здания), система парового отопления даст возможность производить отопление с перерывами и при этом не возникает опасность замерзания теплоносителя с последующим разрывом трубопроводов.

Недостатками системы парового отопления являются ее низкие гигиенические качества: находящаяся в воздухе пыль пригорает на нагревательных приборах, нагретых до 100°С и более; регулировать теплоотдачу этих приборов невозможно и большую часть отопительного периода система должна работать с перерывами; наличие последних приводит к значительным колебаниям температуры воздуха в отапливаемых помещениях. Поэтому системы парового отопления устраивают только в тех зданиях, где люди пребывают периодически - в банях, прачечных, душевых павильонах, вокзалах и в клубах.

На системы воздушного отопления расходуется мало металла, и они могут одновременно с обогревом помещения выполнять его вентиляцию. Однако стоимость системы воздушного отопления жилых зданий выше, чем других систем.

Системы водяного отопления имеют большие стоимость и металлоемкость по сравнению с паровым отоплением, но они обладают высокими санитарно-гигиеническими качествами, обеспечивающими им широкое распространение. Их устраивают во всех жилых зданиях высотой более двух этажей, в общественных и большинстве производственных зданий. Централизованное регулирование теплоотдачи приборов в этой системе достигается путем изменения температуры поступающей в них воды.

Системы водяного отопления различают по способу перемещения воды и конструктивным решениям.

По способу перемещения воды различают системы с естественным и механическим (насосным) побуждением. Системы водяного отопления с естественным побуждением. Принципиальная схема такой системы состоит из котла (генератора тепла), подающего трубопровода, нагревательных приборов, обратного трубопровода и расширительного сосуда, Нагретая в котле вода поступает в нагревательные приборы, отдает в них часть своего тепла на компенсацию потерь тепла через наружные ограждения отапливаемого здания, затем возвращается в котел и далее циркуляция воды повторяется. Ее движение происходит под действием естественного побуждения, возникающего в системе при нагреве воды в котле.

Циркуляционное давление, создавшееся при работе системы, расходуется на преодоление сопротивления движению воды по трубам (от трения воды о стенки труб) и на местные сопротивления (в отводах, кранах, вентилях, нагревательных приборах, котлах, тройниках, крестовинах и т. д.).

Величина этих сопротивлений тем больше, чем выше скорость движения воды в трубах (если скорость увеличится в два раза, то сопротивление - в четыре раза, т. е. в квадратичной зависимости). В системах с естественным побуждением в зданиях небольшой этажности величина действующего давления невелика, и поэтому в них нельзя допускать больших скоростей движения воды в трубах; следовательно, диаметры труб должны быть большими. Система может оказаться экономически невыгодной. Поэтому применение систем с естественной циркуляцией допускается лишь для небольших зданий. Радиус действия таких систем не должен превышать 30 м, а величина к должна быть не менее 3 м.

При нагревании воды в системе объем ее увеличивается. Для вмещения этого дополнительного объема воды в системах отопления предусматривается расширительный сосуд 3; в системах с верхней разводкой и естественным побуждением он одновременно служит для удаления из них воздуха, выделяющегося из воды при ее нагреве в котлах.

Системы водяного отопления с насосным побуждением. Система отопления всегда заполнена водой и задачей насосов является создание давления, необходимого только для преодоления сопротивления движению воды. В таких системах одновременно действуют естественное и насосное побуждения; суммарное давление для двухтрубных систем с верхней разводкой, кгс/м2 (Па)

По экономическим соображениям обычно принимают в размере 5-10 кгс/м2 на 1 м (49-98 Па/м).

Достоинствами систем с насосным побуждением является снижение затрат на трубопроводы (их диаметр меньше, чем в системах с естественным побуждением) и возможность от одной котельной снабжать теплом ряд зданий.

Приборы описанной системы, расположенные на разных этажах здания, работают в разных условиях. Давление р2, обеспечивающее циркуляцию воды через прибор второго этажа, примерно в два раза больше, чем давление р1 для прибора нижнего этажа. В то же время суммарное сопротивление кольца трубопровода, проходящего через котел и прибор второго этажа, примерно равно сопротивлению кольца, проходящего через котел и прибор первого этажа. Поэтому первое кольцо будет работать с избыточным давлением, в прибор на втором этаже поступит больше воды, чем нужно по расчету, и соответственно уменьшится количество воды, проходящее через прибор на первом этаже.

В результате в отапливаемом данным прибором помещении второго этажа наступит перегрев, а в помещении первого этажа - недогрев. Для устранения этого явления применяют специальные методы расчета систем отопления, а также пользуются устанавливаемыми на горячей подводке к приборам кранами двойной регулировки. Если прикрыть эти краны у приборов на втором этаже, можно полностью погасить избыточное давление и тем самым отрегулировать расход воды по всем приборам, находящимся на одном стояке. Однако неравномерность распределения воды в системе, возможна и по отдельным стоякам. Объясняется это тем, что длина колец и, следовательно, суммарные их сопротивления в такой системе для всех стояков неодинаковы: наименьшее сопротивление имеет кольцо, проходящее через стояк (ближайший к главному стояку); наибольшее сопротивление имеет самое длинное кольцо, проходящее через стояк.

Распределить воду по отдельным стоякам, можно путем соответствующей регулировки установленных на каждом стояке пробочных (проходных) кранов. Для циркуляции воды устанавливают два насоса - один рабочий, второй - запасной. Вблизи насосов делают обычно закрытую, обводную линию с задвижкой. В случае прекращения подачи электроэнергии и остановки насоса задвижка открывается, и система отопления работает с естественной циркуляцией.

В системе с насосным побуждением расширительный бак присоединяется к системе перед насосами, и поэтому накапливающийся воздух через него не может удаляться. Для удаления воздуха в смонтированных ранее системах концы подающих стояков были продолжены воздушными трубами, на которых установлены вентили (для отключения стояка на ремонт). Воздушная магистраль в месте присоединения к воздухосборнику выполнена в виде петли, препятствующей циркуляции воды через воздушную магистраль. В настоящее время вместо такого решения применяют воздушные краны, ввинченные в верхние пробки радиаторов, установленных на верхнем этаже здания.

Системы отопления с нижней разводкой в эксплуатации более удобны, чем системы с верхней разводкой. Через подающую магистраль не теряется столько тепла и можно своевременно обнаружить и устранить утечку воды из нее. Чем выше помещен нагревательный прибор в системах с нижней разводкой, тем, следовательно, больше давление, имеющееся в кольце. Чем больше длина кольца, тем больше его суммарное сопротивление; поэтому в системе с нижней разводкой избыточные давления у приборов верхних этажей значительно меньше, чем в системах с верхней разводкой и, следовательно, регулировка их проще. В системах с нижней разводкой величина естественного побуждения снижается из-за ого, что вследствие охлаждения в подающих стояках оды возникает тормозящее ее движение сверху вниз, поэтому суммарное давление, действующее в таких системах,

В настоящее время большое распространение получили однотрубные системы, в которых радиаторы обеими подводками присоединяются к одному стояку; такие системы проще монтируются и обеспечивают более равномерный прогрев всех нагревательных приборов. Наиболее распространена однотрубная система с нижней разводкой и вертикальными стояками.

Стояк такой системы состоит из подъемной и опускной частей. Трехходовые краны могут пропускать расчетное количество или часть воды в приборы в последнем случае остальное ее количество проходит, минуя прибор, через замыкающие участки. Соединение подъемной и опускной частей стояка производится прокладываемой под окнами верхнего этажа соединительной трубой. В верхних пробках приборов, находящихся на верхнем этаже, устанавливают воздушные краны, через которые слесарь удаляет из системы воздух во время пуска системы или обильной подпитки ее водой. В однотрубных системах вода последовательно проходит через все приборы, и поэтому они должны быть тщательно отрегулированы. В случае необходимости регулировку теплоотдачи отдельных приборов осуществляют с помощью трехходовых кранов, а расход воды по отдельным стоякам - проходными (пробочными) кранами или установкой в них дросселирующих шайб. Если стояк будет поступать чрезмерно большое количество воды, то первые по ходу движения воды нагревательные приборы стояка отдадут тепла больше, чем это необходимо по расчету.

Как известно, циркуляция воды в системе, помимо давления, создаваемого насосом и естественным побуждением, получается и от дополнительного давления Ар, возникающего в результате охлаждения воды при движении по трубопроводам системы. Наличие этого давления позволило создать системы квартирного водяного отопления, котел которого не заглублен, а его устанавливают обычно на полу кухни. В таких случаях расстояние, следовательно, система работает только за счет дополнительного давления, возникающего в результате охлаждения воды в трубопроводах. Расчет таких систем отличается от расчетов систем отопления здании.

Системы квартирного водяного отопления в настоящее время широко применяют взамен печного отопления в одно- и двухэтажных зданиях в газифицируемых городах: в таких случаях вместо котлов устанавливают автоматические газовые водонагреватели (ЛГВ), обеспечивающие не только отопление, но и горячее водоснабжение.


2. Сравнение современных систем теплоснабжения теплового гидродинамического насоса типа ТС1 и классического теплового насоса

После монтажа гидродинамических тепловых насосов котельная станет больше похожа на насосную станцию, чем на котельную. Отпадет потребность в дымоотводной трубе. Не станет копоти и грязи, значительно уменьшится потребность в обслуживающем персонале, система автоматики и контроля полностью возьмет на себя процессы управлением производством тепла. Ваша котельная станет более экономичной и высокотехнологичной.

Принципиальные схемы:

В отличие от теплового насоса, который может максимально дать теплоноситель с температурой до +65 °С, гидродинамический тепловой насос может нагреть теплоноситель до +95 °С, а значит, достаточно легко может быть встроен в уже существующую систему теплоснабжения здания.

По капитальным затратам на систему теплоснабжения гидродинамический тепловой насос в разы дешевле теплового насоса, т.к. не требует наличия контура низкопотенциального тепла. Тепловые насосы и тепловые гидродинамические насосы, схожие по названию, но различны по принципу превращение электрической энергии в тепловую.

Как и классический тепловой насос, гидродинамический тепловой насос обладает целым рядом преимуществ:

· Экономичность (гидродинамический тепловой насос экономичнее электрокотлов в 1,5-2 раза, экономичнее дизельных котлов в 5-10 раз).

· Абсолютная экологичность (возможность использования гидродинамического теплового насоса в местах с ограниченными нормами ПДВ).

· Полная пожаро- и взрывобезопасность.

· Не требует водоподготовки. При работе в результате процессов, проходящих в теплогенераторе гидродинамического теплового насоса, происходит дегазация теплоносителя, что благотворно влияет на оборудование и приборы системы теплоснабжения.

· Быстрота установки. При наличии подведенной электрической мощности, монтаж индивидуального теплового пункта с использованием гидродинамического теплового насоса может быть произведен за 36-48 часов.

· Срок окупаемости от 6 до 18 месяцев, в связи с возможностью инсталляции в уже существующую систему теплоснабжения.

· Время до капитального ремонта 10-12 лет. Высокая надежность гидродинамического теплового насоса заложена конструктивно и подтверждена многолетней безаварийной работой гидродинамических тепловых насосов в России и за ее пределами.

3. Автономные системы теплоснабжения

Автономные системы теплоснабжения предназначены для отопления и горячего водоснабжения одноквартирных и блокированных жилых домов. К автономной системе отопления и горячего водоснабжения относятся: источник теплоснабжения (котел) и сеть трубопроводов с нагревательными приборами и водоразборной арматурой.

Преимущества автономных систем теплоснабжения заключаются в следующем:

· отсутствие дорогостоящих наружных тепловых сетей;

· возможность быстрой реализации монтажа и запуска в работу систем отопления и горячего водоснабжения;

· низкие первоначальные затраты;

· упрощение решения всех вопросов, связанных со строительством, так как они сосредоточены в руках владельца;

· сокращение расхода топлива за счет местного регулирования отпуска тепла и отсутствие потерь в тепловых сетях.

Такие системы отопления, по принципу принятых схем, подразделяются на схемы с естественной циркуляцией теплоносителя и схемы с искусственной циркуляцией теплоносителя. В свою очередь, схемы с естественной и искусственной циркуляцией теплоносителя могут подразделяться на одно- и двухтрубные. По принципу движения теплоносителя схемы могут быть тупиковые, попутные и смешанные.

Для систем с естественным побуждением теплоносителя рекомендуются схемы с верхней разводкой, с одним или двумя (в зависимости от нагрузки и конструктивных особенностей дома) главными стояками, с расширительным баком, установленном на главном стояке.

Котел для однотрубных систем с естественной циркуляцией может находиться на одном уровне с нижними нагревательными приборами, но лучше, если он будет заглублен, хотя бы до уровня бетонной плиты, в приямок или установлен в подвале.

Котел для двухтрубных систем отопления с естественной циркуляцией обязательно заглублять по отношению к нижнему нагревательному прибору. Высота заглубления уточняется расчетом, но не менее 1,5-2 м. Системы с искусственным (насосным) побуждением теплоносителя имеют более широкий диапазон применения. Можно конструировать схемы с верхней, нижней и горизонтальной разводками теплоносителя.

Системы отопления бывают:

· водяные;

· воздушные;

· электрические, в том числе с греющим электрокабелем, заложенным в пол отапливаемых помещений, и аккумуляторные тепловые печи (проектируются при наличии разрешения энергоснабжающей организации).

Водяные системы отопления проектируются вертикальными с нагревательными приборами, установленными под оконными проемами, и с греющими трубопроводами, заложенными в конструкции пола. При наличии отапливаемых поверхностей, до 30% отопительной нагрузки следует обеспечивать нагревательными приборами, установленными под оконными проемами.

Квартирные системы воздушного отопления, совмещенные с вентиляцией, должны позволять работать в режиме полной циркуляции (люди отсутствуют) только на наружной вентиляции (интенсивные бытовые процессы) или на смеси наружной и внутренней вентиляции в любых желаемых соотношениях.

Приточный воздух проходит следующую обработку:

· забирается снаружи (в объеме санитарной нормы на человека 30 м3/ч) смешивается с рециркуляционным воздухом;

· очищается в фильтрах;

· подогревается в калориферах;

· подается в обслуживаемые помещения по сети воздуховодов, выполненных из металла или заложенных в строительные конструкции.

В зависимости от наружных условий, система должна обеспечивать работу установки в 3 режимах:

· на наружном воздухе;

· на полной рециркуляции;

· на смеси наружной рециркуляции воздуха.

4. Современные системы отопления и горячего водоснабжения в России

Отопительные приборы являются элементом системы отопления, предназначенным для передачи теплоты от теплоносителя воздуху ограждающим конструкциям обслуживаемого помещения.

К отопительным приборам обычно выдвигается ряд требований, на основании которых можно судить о степени их совершенства и производить сравнения.

· Санитарно-гигиенические. Отопительные приборы по возможности должны обладать более низкой температурой корпуса, иметь наименьшую площадь горизонтальной поверхности для уменьшения отложений пыли, позволять беспрепятственно удалять пыль с корпуса и ограждающих поверхностей помещения вокруг них.

· Экономические. Отопительные приборы должны иметь наименьшие приведённые затраты на их изготовление, монтаж, эксплуатацию, а также обладать наименьшим расходом металла.

· Архитектурно-строительные. Внешний вид отопительного прибора должен соответствовать интерьеру помещения, а занимаемый ими объём должен быть наименьшим, т.е. их объём, приходящийся на единицу теплового потока, должен быть наименьшим.

· Производственно-монтажные. Должна обеспечиваться максимальная механизация работ при производстве и монтаже отопительных приборов. Отопительных приборов. Отопительные приборы должны обладать достаточной механической прочностью.

· Эксплуатационные. Отопительные приборы должны обеспечить управляемость их теплоотдачей и обеспечивать теплоустойчивость и водонепроницаемость при предельно допустимом в рабочих условиях гидростатическом давлении внутри прибора.

· Теплотехнические. Отопительные приборы должны обеспечивать наибольшую плотность удельного теплового потока, приходящегося на единицу площади (Вт/м).

4.1 Системы водяного отопления

Самое распространенное в России отопление – водяное . В этом случае тепло передается в помещения горячей водой, содержащейся в приборах отопления. Наиболее привычный способ - водяное отопление с естественной циркуляцией воды. Принцип прост: вода перемещается из-за разницы температур и плотности. Более легкая горячая вода поднимается от отопительного котла вверх. Постепенно остывая в трубопроводе и отопительных приборах, тяжелеет и стремится вниз, обратно к котлу. Основное преимущество такой системы – независимость от электроснабжения и достаточно простой монтаж. Многие российские умельцы справляются с ее установкой самостоятельно. Кроме того, небольшое циркуляционное давление делает ее безопасной. Но для работы системы требуются трубы увеличенного диаметра. При этом пониженная теплоотдача, ограниченный радиус действия и большое количество времени, требуемое на запуск, делает ее несовершенной и подходящей только для небольших домов.

Более современны и надежны схемы отопления с принудительной циркуляцией. Здесь вода приводится в движение за счет работы циркуляционного насоса. Он устанавливается на трубопроводе, подводящем воду к теплогенератору, и задает скорость потоку.

Быстрый запуск системы и, как следствие, быстрый прогрев помещений - достоинство насосной системы. К недостаткам относится то, что при отключении электропитания она не работает. А это может привести к замораживанию и разгерметизации системы. Сердце системы водяного отопления - источник теплоснабжения, теплогенератор. Именно он создает энергию, обеспечивающую тепло. Такое сердце - котлы на разных видах топлива. Наиболее популярны газовые котлы. Другой вариант - котел на дизельном топливе. Электрические котлы выгодно отличаются отсутствием открытого пламени и продуктов горения. Твердотопливные котлы не удобны в эксплуатации из-за необходимости частой топки. Для этого надо иметь десятки кубометров топлива, площади для его хранения. А добавьте сюда трудозатраты на загрузку и заготовку! Кроме того, режим теплоотдачи твердотопливного котла цикличен, и температура воздуха в отапливаемых помещениях заметно колеблется в течение суток. Место для хранения запасов топлива также необходимо и для котлов на жидком топливе.

Алюминиевые, биметаллические и стальные радиаторы

Прежде чем выбрать какой-либо отопительный прибор, необходимо обратить внимание на те показатели, которым данным прибор должен соответствовать: высокая теплоотдача, небольшой вес, современный дизайн, малая емкость, небольшой вес. Самая главная характеристика отопительного прибора - теплоотдача, то есть то количество тепла, которое должно быть в 1 час на 1 кв.метр поверхности нагрева. Лучшим считается прибор, у которого выше данный показатель. Теплоотдача зависит от многих факторов: теплопередающей среды, конструкции прибора отопления, способа установки, цвета окраски, скорости движения воды, скорости омывания прибора воздухом. Все приборы системы водяного отопления по конструкции подразделяются на панельные, секционные, конвекторы и колончатые алюминиевые радиаторы или стальные.

Панельные приборы отопления

Производятся из холоднокатаной высокачественной стали. Они состоят из одной, двух или трех плоских панелей, внутри которых находится теплоноситель, также у них есть ребристые поверхности, которые нагреваются от панелей. Нагрев помещения происходит быстрее, чем при использовании секционных радиаторов. Вышеуказанные панельные радиаторы водяного отопления бывают с боковым или нижним подключением. Боковое подключение применяется в случаи замены старого радиатора с боковым подключением или в случае, если немного неэстетичный вид радиатора не мешает интерьеру помещения.

Секционные приборы водяного отопления

Изготавливаются из стали, чугуна или алюминия. Они используют конвективный метод обогрева помещения, то есть они отдают тепло за счет циркуляции воздуха через них. Воздух проходит сквозь конвектор сверху вниз и нагревается от большого количества теплых поверхностей.

Конвекторы

Обеспечивают циркуляционное движение воздуха в помещении, когда теплый воздух поднимается вверх, а холодный воздух наоборот опускается вниз и, проходя сквозь конвектор, обратно нагревается.

Стальной радиатор водяного отопления может быть и секционного, и панельного типа. Сталь чаще всего подвергается коррозии и поэтому данные радиаторы наиболее подходят для закрытых помещений. Производят два типа радиаторов: с горизонтальными каналами и с вертикальными каналами.

Алюминиевые радиаторы

Алюминиевые радиаторы водяного отопления отличаются небольшим весом и обладают хорошей теплоотдачей, эстетичны, но дорого стоят. Часто не выдерживают высокого давления в системе. Их достоинство – они нагревают помещение намного быстрее, чем это делают чугунные радиаторы.

Биметаллические радиаторы

Биметаллические радиаторы водяного отопления состоят из алюминиевого корпуса и стальных труб, по которым движется теплоноситель. Их главное преимущество перед другими радиаторами - прочность. Их рабочее давление достигает до 40 атм., в то время как алюминиевые радиаторы водяного отопления работают при давлении в 16 атм. К сожалению, на данный момент на европейском рынке очень редко можно встретить в продаже данные биметаллические радиаторы водяного отопления.

Чугунные радиаторы колончатого типа – это практически самый распространенный вид радиаторов. Они долговечны и практичны в использовании. Чугунные радиаторы выпускают двухколонными секциями. Данные отопительные приборы могут эксплуатироваться при самом большом рабочем давлении. Их недостаток – это большой вес и несоответствие дизайну помещения. Вышеуказанные радиаторы применяются в системах с плохой подготовкой теплоносителя. Они достаточно недороги по цене.

4.2 Газовое отопление

Следующий по частоте применения в России вид отопления загородного дома - газовый. Приспособленные для сжигания газа отопительные приборы в этом случае устанавливаются непосредственно в обогреваемых помещениях.

Газовые печи экономичны и имеют высокие теплотехнические показатели. Отличительная особенность таких печей - равномерность нагрева внешней поверхности. Как дополнительные источники тепла используют газовые камины, которые также придают особый комфорт интерьеру.

Достоинство газового отопления заключается, прежде всего, в относительно низкой стоимости природного газа. Его использование позволяет автоматизировать процесс горения топлива, значительно повышает эффективность отопительного оборудования, снижает затраты на эксплуатацию. Но оно взрывоопасно и недопустимо для самостоятельного изготовления и монтажа.

4.3 Воздушное отопление

Системы воздушного отопления различают в зависимости от способа создания циркуляции воздуха: гравитационные и вентиляторные. Гравитационная воздушная система отопления основана на разности плотности воздуха при различных температурах. В процессе прогрева возникает естественная циркуляция воздуха в системе. В вентиляторной системе используется электрический вентилятор, который повышает давление воздуха и распределяет его по воздуховодам и помещениям (принудительная механическая циркуляция).

Воздух нагревается в калориферах, подогревающихся изнутри водой, паром, электричеством или горячими газами. Калорифер размещается либо в отдельной вентиляторной камере (центральная система отопления), либо непосредственно в помещении, которое отапливается (местная система).

Отсутствие замерзающего теплоносителя делает удачным этот вид отопления для домов с непостоянным использованием. Воздушное отопление быстро прогреет дом, а автоматические регуляторы будут поддерживать заданную вами температуру. К недостаткам такого отопления можно отнести разве что опасность распространения движущимся воздухом вредных веществ.

4.4 Электрическое отопление

Системы прямого стационарного электроотопления весьма надежны, экологически чисты и безопасны. Электричеством обогревается до 70% малоэтажных домов в странах Скандинавии и Финляндии.Оборудование для электроотопления можно разделить на 4 группы:- настенные электроконвекторы;- потолочные обогреватели;- кабельные и пленочные системы для подогрева пола и потолка;- регулирующие термостаты и программируемые устройства.

Благодаря такому разнообразию легко выбрать подходящий вариант для каждого конкретного помещения. Затраты на оборудование и эксплуатацию электросистем очень низкие. Системы могут автоматически включаться и выключаться для поддержания температуры на заданном уровне. Скажем, понижать ее до минимума на время вашего отсутствия. Эта функция существенно экономит затраты на электроэнергию. Рост цен на различные виды топлива делают электроотопление весьма привлекательным для владельцев частных домов. Минусом систем электроотопления является то, что придется устанавливать дополнительное оборудование для обеспечения дома горячей водой. Кроме того, у нас все еще случаются длительные отключения электроэнергии, и владельцам такой системы следует продумать дополнительный источник отопления - на всякий случай.

4.5 Трубопроводы

Трубопроводы для подводки теплоносителя к отопительным приборам могут быть изготовлены из стальных водогазопроводных труб, из медных труб и из полимерных материалов (металлопластиковые трубы, полипропиленовые трубы и трубы из поперечно шитого полипропилена). Магистрали из стальных труб не подходят для скрытой подводки к радиаторам. Все остальные трубы можно «прятать» под отделочными материалами с соблюдением определенных технологий монтажа системы. Еще необходимо отметить, что не допускается монтаж системы отопления из медных труб, если в качестве отопительных приборов выбраны алюминиевые секционные радиаторы.

4.6 Котельное оборудование

Как правило, отопление городского жилья обеспечивается от централизованных котельных и городских теплосетей, в то время как отопление загородных домов в основном осуществляется от собственных (автономных) источников тепла и лишь изредка от котельной, работающей на группу зданий.

Рынок котельного оборудования в России достаточно насыщен. Практически все ведущие западные фирмы, производящие котельное оборудование, имеют у нас свои представительства. Российские котлы хотя и широко представлены на рынке, но конкуренции с импортными образцами по потребительским качествам пока не выдерживают. В тоже время практически все западные производители разрабатывают и поставляют на российский рынок котлы, адаптированные к нашим условиям:

· многотопливные котлы;

· газовые котлы, работающие без электричества.

Многотопливные котлы

Практически все фирмы выпускают котлы, работающие на жидком топливе и газе, а некоторые фирмы добавляют опцию твердого топлива. Необходимо заметить, что многотопливные котлы, в силу конструкции горелки достаточно шумные.

Газовые котлы, работающие без электричества

Сейчас основная масса котлов предназначена для работы в системах отопления с принудительной циркуляцией теплоносителя, и, в типичном для России случае отключения электроэнергии котел просто останавливается и не работает пока нет электричества.

Системы управления котельной

Система управления котельным оборудованием в зависимости от предназначения котельной (только отопление одного здания, отопление и горячее водоснабжение, наличие контуров теплых полов, отопление и ГВС нескольких зданий), может варьироваться от простейшей, выполненной на термостатических регуляторах, до сложной с микропроцессорным регулированием.

5. Перспективы развития теплоснабжения в России

К числу основных факторов, определяющих перспективы развития теплоснабжения в России, следует отнести:

1. Курс на реструктуризацию единой энергетической системы с формированием 3-уровневой системы предприятий: производители тепла, тепловые сети и продавцы энергии. Реструктуризация будет сопровождаться переделом собственности в энергетическом комплексе в пользу частного предпринимательства. Ожидается привлечение крупных инвестиций, в том числе из-за рубежа. В данном случае реструктуризация затронет «большую» энергетику.

2. Жилищно-коммунальная реформа, связанная с сокращением и снятием дотаций населению в оплате коммунальных услуг, в том числе тепловой энергии.

3. Стабильный рост экономики в строительном комплексе.

4. Интеграция в экономику страны передовых теплоэнергетических технологий западных стран.

5. Пересмотр нормативно-правовой базы теплоэнергетики с учетом интересов крупных инвесторов.

6. Приближение внутренних цен на топливно-энергетические ресурсы к мировым. Формирование на внутреннем рынке «дефицита» топливных ресурсов экспортного потенциала, в первую очередь – природного газа и нефти. Увеличение доли угля и торфа в топливном балансе страны.

7. Формирование баланса муниципальных и рыночных механизмов организации и управления теплоснабжением регионов.

8. Становление современных учетно-биллинговых систем на рынке производства, поставки и потребления тепловой энергии.

Заключение

Россия относится к странам с высоким уровнем централизации теплоснабжения. Энергетическое, экологическое и техническое преимущество централизованного теплоснабжения над автономным в условиях монополии государственной собственности считалось априорным. Автономное и индивидуальное теплоснабжение отдельных домов было выведено за рамки энергетики и развивалось по остаточному принципу.

В системе централизованного теплоснабжения большое распространение получили ТЭЦ – предприятия по комбинированной выработке электроэнергии и теплоты. Технологически ТЭЦ ориентированы на приоритет электроснабжения, попутно производимое тепло востребовано в большей степени в холодный период года, сбрасываемое в окружающую среду – в теплый период. Гармонизировать режимы производства тепловой и электрической энергии с режимами их потребления удается далеко не всегда. Тем не менее, высокий уровень большой энергетики предопределил «технологическую независимость» и даже определенный экспортный потенциал страны, чего нельзя сказать о малой теплоэнергетике. Низкие цены на топливные ресурсы, экономически не обоснованная цена тепловой энергии не способствовали развитию технологий «малого» котлостроения.

Теплоснабжение является важной отраслью в нашей жизни. Оно приносит тепло в наш дом, обеспечивает уют и комфорт, а также горячее водоснабжение необходимое каждый день в современном мире.

Современные системы теплоснабжения значительно экономят ресурсы, более удобны в эксплуатации, соответствуют санитарно-гигиеническим требованиям, менее габаритные и выглядят более эстетично.

Список используемой литературы

1. http://www.rosteplo.ru

2. http://dom.ustanovi.ru

3. http://www.boatanchors.ru

4. http://whttp://www.ecoteplo.ru

СОВРЕМЕННЫЕ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

(, Хабаровский центр энергоресурсосбережения)

В Хабаровске и Хабаровском крае, как и во многих других регионах Росси, преимущественно используются «открытые» системы теплоснабжения .

Под «открытой» системой в термодинамике понимается система, обменивающаяся массой с окружающей средой, т. е. «неплотная» система.

В данной публикации под «открытой» системой понимается система теплоснабжения, в которой система горячего водоснабжения (ГВС) подключена по «открытой» системе, т. е. с непосредственным водоразбором из трубопроводов системы теплоснабжения, а система отопления и вентиляции подключены по зависимой схеме присоединения к тепловым сетям.

Открытые системы теплоснабжения имеют следующие недостатки:

1. Большие расходы подпиточной воды и, следовательно, большие затраты на водоподготовку. При данной схеме теплоноситель может использоваться как продуктивно (на нужды ГВС), так и непродуктивно: несанкционированные утечки.

К несанкционированным утечкам относятся:

Утечки через запорно-регулирующую арматуру;

Утечки при повреждении трубопроводов;

Утечки через стояки системы отопления (сбросы) при разрегулированных системах отопления и при недостаточных перепадах давления на элеваторных вводах;

Утечки (сбросы) при ремонтах системы отопления, когда приходится полностью сливать воду и затем снова наполнять систему, а если выходные задвижки «не держат», то приходится «обесточивать» целый квартал или врезку.

Пример – авария в ноябре 2001 г. в Хабаровске на микрорайоне Большая – Вяземская. Чтобы провести в одной из школ ремонт системы теплоснабжения, пришлось отключить целый квартал.


2. При открытой схеме ГВС потребитель получает воду непосредственно из тепловой сети. В этом случае горячая вода может иметь температуру 90оС и более и давление 6-8 кгс/см2, что приводит не только к перерасходу тепла, но и потенциально создает опасную ситуацию как для санитарного оборудования, так и для людей.

3. Неустойчивый гидравлический режим теплопотребления (один потребитель вместо другого).

4. Плохое качество теплоносителя, который содержит большое количество механических примесей, органических соединений и растворенных газов. Это приводит к уменьшению срока эксплуатации трубопроводов систем теплоснабжения из-за повышенной коррозии и к уменьшению их пропускной способности из-за «обрастания», что нарушает гидравлический режим.

5. Невозможность, в принципе, создания комфортных условий у потребителя при использовании элеваторных систем отопления.

Необходимо ответить, что практически все тепловые пункты абонентов г. Хабаровска оборудованы элеваторным тепловым вводом.

Главное достоинство элеватора – это то, что он не потребляет энергии на свой привод. Сложилось мнение, что элеватор имеет низкий КПД, и это было бы справедливо, если для его работы необходимо было бы расходовать энергию. На самом деле для работы смешения используется разность давлений в трубопроводах системы теплоснабжения. Если бы не элеватор, то пришлось бы дросселировать поток теплоносителя, а дросселирование – это потеря энергии. Поэтому применительно к тепловым вводам, элеватор – это не насос с низким КПД, а устройство для вторичного использования энергии, затраченной на привод циркуляционных насосов ТЭЦ. Также к достоинствам элеватора можно отнести то, что для его обслуживания не требуются высококвалифицированные специалисты, так как элеватор – это простое, надежное и непритязательное в эксплуатации устройство.

Основной недостаток элеватора – это невозможность пропорционального регулирования тепловой мощности, так как при не изменяющемся диаметре отверстия соплового аппарата он имеет постоянный коэффициент смешения, а процесс регулирования предполагает возможности изменения этой величины. По этой причине на Западе элеватор отвергнут как устройство для тепловых пунктов. Отметим, что данный недостаток можно ликвидировать, если использовать элеватор с регулируемым соплом.

Однако практика использования элеваторов с регулируемым соплом показала их низкую надежность при плохом качестве сетевой воды (наличие механических примесей). Кроме того, такие устройства имеют небольшой диапазон регулирования. Поэтому в г. Хабаровске эти устройства не нашли широкого применения.

Другой недостаток элеватора – это ненадежность его работы при малом располагаемом перепаде давления. Для устойчивой работы элеватора необходимо иметь перепад давления от 120 кПа и более. Однако до настоящего времени в г. Хабаровске проектируются элеваторные узлы при перепаде давления 30-50 кПа. При таком перепаде нормальная эксплуатация элеваторных узлов, в принципе, невозможна и поэтому очень часто потребители с такими узлами работают на «сброс», что приводит к сверхнормативным потерям сетевой воды.

Применение элеваторных узлов тормозит внедрение в системах теплоснабжения энергосберегающих мероприятий, таких как комплексное автоматическое регулирование параметров теплоносителя в здании и адекватную этим задачам конструкцию системы отопления, обеспечивающих точность и стабильность комфортных условий и экономичный расход тепла.


Комплексное автоматическое регулирование включает в себя следующие базовые принципы:

регулирование в индивидуальных тепловых пунктах (ИТП) или автоматизированных узлах управления (АУУ), обеспечивающих в соответствии с отопительным графиком изменение температуры теплоносителя, подаваемого в систему отопления в зависимости от температуры наружного воздуха;

индивидуальное автоматическое регулирование на каждом отопительном приборе при помощи термостата, обеспечивающего поддержание заданной температуры в помещении.

Все вышеизложенное привело к тому, что, начиная с 2000 г., в г. Хабаровске начался масштабный переход от «открытых» зависимых систем теплоснабжения к «закрытым» независимым системам с автоматизированными тепловыми пунктами.

Реконструкция системы теплоснабжения с применением энергосберегающих мероприятий и переходом от «открытых» зависимых систем к «закрытым» независимым системам позволит:

Повысить комфортность и надежность обеспечения теплом за счет поддержания необходимой температуры в помещениях вне зависимости от погодных условий и параметров теплоносителя;

Повысит гидравлическую устойчивость системы теплоснабжения: гидравлический режим магистральных тепловых сетей нормализуется вследствие того, что автоматика не допускает сверхнормативного превышения потребления тепла;

Получить экономию тепла в размере 10-15% за счет регулирования температуры теплоносителя в соответствии с температурой наружного воздуха и ночного снижения температуры в отапливаемых зданиях до 30% в переходный период отопительного сезона;

Увеличить срок эксплуатации трубопроводов системы отопления здания в 4-5 раз, вследствие того, что при независимой схеме теплоснабжения во внутреннем контуре системы отопления циркулирует чистый теплоноситель, не содержащий растворенного кислорода и поэтому отопительные приборы и подводящие трубопроводы не забиваются грязью и продуктами коррозии;

Резко уменьшить подпитку тепловых сетей и, следовательно, затраты на водоподготовку, а также повысить качество горячей воды.

Применение независимых систем теплоснабжения открывает новые перспективы в развитии внутриквартальных сетей и внутренних систем отопления: использование гибких предизолированных пластиковых распределительных трубопроводов, имеющих срок службы около 50 лет, полипропиленовых труб для внутренних систем, штампованных панельных и алюминиевых радиаторов и т. п.

Однако переход в Хабаровске к современным системам теплоснабжения с автоматизированными тепловыми пунктами поставил перед проектными и монтажными организациями, энергоснабжающей организацией, потребителями тепла ряд проблем таких как:

Отсутствие круглогодичной циркуляции теплоносителя в магистральных тепловых сетях.

Устаревший подход к проектированию и монтажу внутренних систем теплоснабжения.

Необходимость в техническом обслуживании современных систем теплоснабжения.

Рассмотрим эти проблемы более подробно.

Проблема №1 Отсутствие круглогодичной циркуляции в магистральных трубопроводах тепловых сетей.

В Хабаровске магистральные трубопроводы системы теплоснабжения находятся под циркуляцией только в течение отопительного сезона: примерно с середины сентября до середины мая. В остальное время теплоноситель поступает по одному из трубопроводов: подающему или обратному, причем часть времени он подается по одному, а часть по другому трубопроводу.

Это приводит к большим неудобствам и дополнительным затратам при внедрении энергосберегающих технологий в системах теплоснабжения, в частности, в системах горячего водоснабжения (ГВС). Из-за отсутствия циркуляции в межотопительном сезоне приходится использовать смешанную «открыто-закрытую» систему ГВС: «закрытую» в отопительном сезоне и «открытую» в межотопительном сезоне, что увеличивает капитальные затраты на монтаж и оборудование теплового пункта на 0,5-3%.

Проблема №2. Устаревший подход к проектированию и монтажу внутренних систем теплоснабжения зданий.

В доперестроечный период развития нашего государства правительством была поставлена задача по экономии металла. В связи с этим началось массовое внедрение однотрубных нерегулируемых систем отопления, что было обусловлено более низкими (по сравнению с двухтрубными) металлозатратами, затратами на монтаж и более высокой теплогидравлической устойчивостью в многоэтажных зданиях.

В настоящее время при вводе новых объектов в городах России, таких как Москва и Санкт-Петербург, а также на Украине в целях энергосбережения обязательно применение терморегуляторов перед нагревательными приборами, что фактически, за незначительным исключением, предопределяет проектирование двухтрубных систем отопления.

Поэтому широкое распространение однотрубных систем при оснащении каждого отопительного прибора термостатом потеряло смысл. В регулируемых системах отопления при установке термостата перед нагревательным прибором двухтрубная система отопления оказывается высокоэффективной и обладающей повышенной гидравлической устойчивостью. При этом расхождения по металлозатратам по сравнению с однотрубными находятся в пределах ±10%.

Следует также отметить, что за рубежом однотрубные системы отопления практически не применяются

Схемы двухтрубных систем могут быть различными, однако наиболее целесообразно применять независимую схему, так как при применении терморегуляторов (термостатов) зависимая схема ненадежна в эксплуатации из-за низкого качества теплоносителя. При незначительных отверстиях в термостатах, измеряемых миллиметрами, они быстро выходят из строя.

В предлагается применять однотрубные системы отопления с терморегуляторами только для зданий не более 3-4 этажей. Там же отмечается нецелесообразность применения в системах отопления с терморегуляторами чугунных нагревательных приборов, так как в процессе эксплуатации из них вымываются формовочная земля, песок, окалина, которые забивают отверстия терморегуляторов.

Применение независимых схем теплоснабжения открывает новые перспективы: использование полимерных или металлополимерных трубопроводов для внутренних систем, современных нагревательных приборов (алюминиевые и стальные нагревательные приборы со встроенными терморегуляторами).

Следует отметить, что двухтрубная система отопления, в отличие от однотрубной, требует обязательной наладки с использованием специального оборудования и высококвалифицированных специалистов.

Необходимо отметить, что даже при проектировании и монтаже автоматизированных тепловых пунктов с погодным регулированием в г. Хабаровске до настоящего времени проектируются и внедряются только однотрубные системы отопления без терморегуляторов перед отопительными приборами. Причем эти системы гидравлически разбалансированы, а иногда настолько (например, детский дом по ул. Ленина), что для того, чтобы поддерживать нормальную температуру в здании, концевые стояки работают «на сброс» и это при независимой схеме отопления!

Хочется верить, что недооценка важности балансировки гидравлики систем отопления связана просто с отсутствием необходимых знаний и опыта.

Если Хабаровским проектировщикам и монтажным организациям задать вопрос: «Нужно ли проводить балансировку колес автомобиля?», то последует очевидный ответ: «Несомненно!» Но почему же тогда балансировка системы отопления, вентиляции и ГВС не считается необходимым делом. Ведь неправильные расходы теплоносителя приводят к неправильным температурам воздуха в помещении, плохой работе автоматики, шумам быстрому выходу из строя насосов, неэкономичной работе всей системы.

Проектировщики полагают, что достаточно провести гидравлический расчет с подбором труб и при необходимости шайб, и проблема будет решена. Но это не так. Во-первых, расчет имеет приближенный характер, а, во-вторых, при монтаже возникает масса дополнительных неконтролируемых факторов (чаще всего монтажники просто не устанавливают дроссельные шайбы).

Существует мнение , что гидравлику систем отопления можно увязать с помощью расчета настроек термостатических клапанов. Это тоже неверно. Например, если по каким-либо причинам через стояк не проходит достаточное количество теплоносителя, то термостатические клапаны будут просто открыты, а температура воздуха в помещении при этом будет низкой. С другой стороны, при перерасходе теплоносителя может возникнуть ситуация, когда открыты форточки и термостатические клапаны. Все вышесказанное абсолютно не умаляет необходимости и важности установки перед отопительными приборами термостатических клапанов, а лишь подчеркивает, что для их хорошей работы необходима балансировка системы.

Под балансировкой системы понимается наладка гидравлики, чтобы каждый элемент системы: радиатор, калорифер, ветвь, плечо, стояк, магистраль – имели проектные расходы. При этом определение и выставление настроек термостатических клапанов является частью процесса наладки.

Как было указано выше, в г. Хабаровске проектируются и монтируются только гидравлически разбалансированные однотрубные системы отопления без термостатов.

Покажем на примерах новых, вводимых в эксплуатацию объектах к чему это приводит.

Пример 1. Детский дом №1 по ул. Ленина.

Введен в эксплуатацию в конце 2001г. Система ГВС закрытая, а система отопления однотрубная, без термостатов, подключенная по независимой схеме. Проектировал – Хабаровскгражданпроект, монтаж системы отопления и ГВС – Хабаровское монтажное управление №1. Проектирование и монтаж теплового пункта – специалисты ХЦЭС. Тепловой пункт находится на техническом обслуживании в ХЦЭС.

После запуска системы теплоснабжения выявились следующие недостатки:

Система отопления не сбалансирована. В одних помещениях наблюдался перегрев: 25-27оС, а в других недогрев: 12-14оС. Это связано с несколькими причинами:

для балансировки системы отопления проектировщики предусмотрели шайбы, а монтажники их не врезали, мотивируя это тем, что «все равно они засорятся через 2-3 недели»;

отдельные отопительные приборы выполнены без замыкающих участков, их поверхность завышена, что приводит к перегреву отдельных помещений.

Кроме того, для того чтобы обеспечить циркуляцию и нормальную температуру, в недогретых помещениях, концевые стояки работали на «сброс», что приводило к утечкам воды 20-30 т в сутки и это при независимой схеме!!!

Система приточной вентиляции не работает, а это недопустимо, так как в здании установлены термостатические окна с низкой воздухопроницаемостью.

По просьбе Заказчика специалисты ХЦЭС установили на стояках балансировочную арматуру и провели балансировку системы отопления. В результате этого температура в помещениях выровнялась и составила 20-22оС, подпитка системы сократилась до нуля, а экономия тепловой энергии составила около 30%. Наладка системы вентиляции не проводилась.

Пример 2. Институт повышения квалификации врачей.

Введен в эксплуатацию в октябре 2002 . Система ГВС закрытая, система отопления однотрубная без термостатов подключена по независимой схеме.

После запуска системы отопления были выявлены следующие недостатки: система отопления не сбалансирована, арматура для регулировки системы отсутствует (проектом даже не предусмотрены дроссельные шайбы). Температура воздуха в помещениях изменяется от 18 до 25оС, причем для того, чтобы довести температуру в угловых помещениях до 18оС пришлось увеличить расход тепла в 3 раза по сравнению с требуемым. То есть если теплопотребление здания уменьшить в три раза, то в большинстве помещений будет температура 18-20оС, но при этом в угловых помещениях температура не превысит 12оС.

Эти примеры распространяются на все вновь введенные здания с независимыми схемами отопления в г. Хабаровске: цирк и гостиница цирка (в гостинице открыты форточки (перетоп), а в закулисной части холодно (недотоп), жилые дома по ул. Фабричной, ул. Дзержинского, терапевтический корпус Железнодорожной больницы и т. д.

С проблемой №2 тесно сплетается проблема №3.

Проблема №3. Необходимость в техническом обслуживании современных систем теплоснабжения.

Как показывает наш трехлетний опыт, современные системы теплоснабжения зданий, выполненные с использованием энергосберегающих технологий, в процессе эксплуатации нуждаются в постоянном уходе. Для этого необходимо привлекать высококвалифицированных, специально обученных специалистов, используя специальные технологии и инструменты.

Покажем это на примерах автоматизированных тепловых пунктов внедренных в г. Хабаровске.

Пример 1. Тепловые пункты, не обслуживаемые специализированными организациями.

В 1998 г. в г. Хабаровске было введено в эксплуатацию здание Хакобанка по улице Ленинградской г. Хабаровска. Система теплоснабжения здания была спроектирована и смонтирована специалистами из Финляндии. Оборудование использовано также финское. Система отопления выполнена по независимой двухтрубной схеме с термостатами, снабжена балансировочной арматурой. Система ГВС закрытая. Обслуживалась система специалистами банка. В первые три года эксплуатации во всех помещениях поддерживалась комфортная температура. Через 3 года пошли жалобы от жильцов отдельных квартир на то, что в квартире «холодно». Жильцы обратились в ХЦЭС с просьбой обследовать систему и помочь наладить «комфортный» режим.

Обследование ХЦЭС показало: система автоматического регулирования не работает (вышел из строя погодный регулятор ECL), теплообменные поверхности теплообменника системы отопления засорились, что привело к уменьшению его теплопроизводительности примерно на 30% и разбалансировке системы отопления.

Аналогичная картина наблюдалась на жилом доме по ул. Дзержинского 4, где современная система теплоснабжения обслуживалась силами жильцов.

Пример 2. Тепловые пункты, обслуживаемые специализированными организациями.

На сегодняшний день на обслуживании в Хабаровском центре энергоресурсосбережения находится около 60 автоматизированных тепловых пунктов. Как показал наш опыт эксплуатации, в процессе обслуживания таких узлов возникают следующие проблемы:

очистка фильтров, установленных перед теплообменниками ГВС и отопления и перед циркуляционными насосами;

контроль за работой насосов и теплообменного оборудования;

контроль за работой автоматики и регулирования.

Качество теплоносителя и, даже холодной воды, в г. Хабаровске очень низкое и поэтому постоянно возникает проблема очистки фильтров, которые установлены в первичном контуре теплообменников ГВС и отопления, перед циркуляционными насосами во вторичном контуре теплообменников. Например, при запуске в эксплуатацию в отопительном сезоне 2002/03г. блока жилых домов по переулку Фабричному, в каждом из которых был смонтирован ИТП, фильтр установленный в первичном контуре теплообменника отопления пришлось промывать 1-2 раза в день в течение первых 10-ти дней после запуска и затем, в последующие две недели, не менее одного раза в 2-3 дня. На здании цирка и гостиницы цирка в отопительном сезоне 2001/02г. пришлось промывать фильтр холодной воды 1-2 раза в неделю.

Казалось бы, что очистка фильтра, установленного в первичном контуре, это рутинная операция, которую может выполнить неквалифицированный специалист. Однако, для очистки (проливки) фильтра необходимо на какое-то время остановить всю систему теплоснабжения, отключить холодную воду, отключить циркуляционный насос в системе ГВС и затем все это снова запустить. Также при отключении системы теплоснабжения для очистки фильтров желательно отключить, а потом перезапустить систему автоматики, чтобы при запуске системы теплоснабжения не возникало гидроударов. При этом если при отключении первичного контура системы ГВС не отключить вторичный контур по холодной воде, то из-за температурных расширений в теплообменнике ГВС может появиться «течь».

Вторая проблема, которая возникает в процессе эксплуатации автоматизированных тепловых пунктов – это проблема контроля за работой оборудования: насосов, теплообменников, приборов учета и регулирования.

Например, часто перед запуском после межотопительного периода циркуляционные насосы находятся в «сухом» состоянии, т. е. не заполнены сетевой водой, и их сальниковые уплотнения засыхают, а иногда даже прикипают к валу насоса. Поэтому перед запуском, чтобы избежать протечек сетевой воды через сальниковые уплотнения, необходимо насос несколько раз плавно прокрутить вручную.

Также в процессе эксплуатации необходимо периодически следить за работой регулирующих клапанов, чтобы они не работали постоянно в режиме «закрыто» или «открыто», регуляторов давления, перепада давления и т. д., кроме того необходимо следить за изменением гидравлического сопротивления и теплопередающей поверхности теплообменников.

Контролировать изменения гидравлического сопротивления и площади теплопередающей поверхности теплообменников можно регистрируя или периодически измеряя температуру теплоносителя в первичном и во вторичном контуре теплообменника и перепад давлений и расход теплоносителя в этих контурах.

Например, в отопительном сезоне 2001/02г. в гостинице цирка через месяц после начала эксплуатации резко упала температура горячей воды. Исследования показали, что в начале эксплуатации расход теплоносителя в первичном контуре системы ГВС составлял составлял 2-3 т/час, а через месяц после начала эксплуатации он составлял не более 1 т/час. Это произошло из-за того что первичный контур теплообменника ГВС оказался забит продуктами сварки (окалиной), что привело к увеличению гидравлического сопротивления и уменьшению площади теплопередающей поверхности. После того, как теплообменник был разобран и промыт, температура горячей воды достигла нормы.

Как показал опыт обслуживания современных систем теплоснабжения с автоматизированными тепловыми пунктами, в процессе их эксплуатации необходимо осуществлять постоянный контроль и вносить коррективы в работу систем автоматики и регулирования. В Хабаровске в последние 3-5 лет температурный график 130/70 не соблюдается: даже при температуре ниже минус 30оС температура теплоносителя на входе у абонентов не превышает 105оС. Поэтому специалисты ХЦЭС, обслуживающие автоматизированные тепловые пункты, на основе статистических наблюдений за режимом теплопотребления объектов перед началом отопительного сезона для каждого объекта вносят в контроллер свой температурный график, который затем корректируют в течение отопительного сезона.

Проблема обслуживания автоматизированных тепловых пунктов тесно связана с отсутствием достаточного количества высококвалифицированных специалистов, которых целенаправленно не готовят в пределах Дальневосточного региона. В Хабаровском центре энергоресурсосбережения обслуживанием автоматизированных тепловых узлов занимаются специалисты – выпускники кафедры «Теплотехника, теплогазоснабжение и вентиляция» Хабаровского государственного технического университета, прошедшие обучение на фирмах-изготовителях оборудования (Данфос, Альфа-Лаваль и т. д.).

Отметим, что ХЦЭС является региональным сервисным центром фирм-поставщиков оборудования для автоматизированных тепловых пунктов, таких как: Данфос (Дания) – поставщик контроллеров, термодатчиков, регулирующих клапанов и т. д.; Вило (Германия) - поставщик циркуляционных насосов и насосовой автоматики; Альфа-Лаваль (Швеция-Россия) – поставщик теплообменного оборудования; ТБН «Энергосервис» (Москва) – поставщик теплосчетчиков и пр.

В соответствии с соглашением о сервисном партнерстве, заключенном между ХЦЭС и фирмой Альфа-Лаваль, ХЦЭС проводит работы по обслуживанию теплообменного оборудования фирмы Альфа-Лаваль, используя для этого персонал, прошедший обучение в сервисном центре Альфа-Лаваль, и используя для этих целей только разрешенные к эксплуатации Альфа-Лаваль оригинальные запасные части и материалы.

В свою очередь Альфа-Лаваль поставило ХЦЭС оборудование, инструмент, расходные материалы и запасные части, необходимые для обслуживания пластинчатых теплообменников компании Альфа-Лаваль, провело обучение специалистов ХЦЭС в своем сервисном центре.

Это позволяет ХЦЭС осуществлять разборную и безразборную промывку теплообменников непосредственно у потребителей в г. Хабаровске.

Поэтому все вопросы, связанные с эксплуатацией и ремонтом оборудования автоматизированных тепловых пунктов, решаются на месте - в г. Хабаровске.

Отметим также, что в отличие от других фирм, занимающихся внедрением автоматизированных тепловых пунктов, ХЦЭС устанавливает более дорогое, но более надежное и более качественное оборудование (например, разборные, а не паянные теплообменники, насосы с сухим, а не мокрым ротором). Это гарантирует надежную работу оборудования в течение 8-10 лет.

Использование же дешевого, но менее качественного оборудования не гарантирует бесперебойную работу автоматизированных тепловых пунктов. Как показывает наш опыт, а также опыт других фирм , это оборудование выходит из строя, как правило, через 2-3 года и потребитель начинает ощущать тепловой дискомфорт (см., например, пример 1 из проблемы № 3).

Тепловые испытания теплообменников, проведенные в г. Санкт-Петербурге , показали:

Снижение тепловой эффективности теплообменного аппарата составляет после первого года 5%, после второго – 15%, после третьего более 25 %, после четвертого – 35 %, а после пятого – 40-45%;

Снижение теплопроизводительности аппарата и коэффициента теплопередачи связано с загрязнением поверхности теплообмена как со стороны первичного контура, так и со стороны вторичного контура; эти загрязнения проявляются в виде отложений, причем со стороны первичного контура отложения имеют коричневый цвет, а со стороны вторичного – черный;

Коричневый цвет отложений определяется в основном окислами железа, которые образуются в сетевой воде из-за коррозии внутренней поверхности трубопроводов теплотрасс; данные загрязнения со стороны первичного контура легко удаляются с помощью мягкой тряпки под струей теплой воды;

Черный цвет отложений вторичного контура определяется, в основном, органическими соединениями, которые в большом количестве находятся в воде вторичного контура, которая циркулирует по замкнутому контуру системы отопления здания и не подвергается никакой очистке; удалить отложения со стороны вторичного контура тем же способом, что и с первичного не удается, так как они являются не рыхлыми, а плотными; для очистки теплообменных пластин со стороны вторичного контура приходилось пластины замачивать в керосине на 15-20 мин., а затем они протирались со значительными усилиями влажными тряпками, смоченными в керосине;

Вследствие того, что биологические отложения, образующиеся на пластинах со стороны вторичного контура, имеют очень сильное сцепление (адгезию) с поверхностью металла, безразборная химическая промывка вторичного контура не дает удовлетворительных результатов .

Дешевое оборудование, как правило, используют те внедренческие фирмы, которые не занимаются сервисным обслуживанием внедренного ими оборудования, так как для этого требуется иметь соответствующее оборудование и материалы, а также квалифицированный персонал, т. е. вкладывать значительные средства в развитие своей производственной базы.

Поэтому потребитель находится перед выбором:

Затратить минимум капвложений и внедрить дешевое оборудование (мокророторные насосы, паяные теплообменники и т. д.), которое через 2-3 года в значительной мере утратит свои свойства или придет в полную негодность; при этом эксплуатационные затраты на ремонт и поддержание оборудования после 2-3 лет резко возрастут и могут быть того же порядка, что и первоначальные вложения;

Затратить максимум капвложений, внедрить надежное дорогостоящее оборудование (разборные теплообменники проверенных фирм, например. Альфа-Лаваль, сухороторные насосы с частотным приводом, надежную автоматику и т. д.) и за счет этого значительно снизить свои эксплуатационные расходы.

Выбор остается за потребителем, но не надо забывать, что «скупой платит дважды».

Резюмируя вышеизложенное можно сделать следующие выводы:

1. В Хабаровске в последние 2-3 года начался процесс перехода с устаревших «открытых» систем к современным «закрытым» системам теплоснабжения с внедрением энергосберегающих технологий. Однако чтобы ускорить этот процесс и сделать его необратимым, необходимо:

1.1. Переломить психологию Заказчиков, проектировщиков, монтажников и эксплуатационников, которая заключается в следующем: проще и дешевле внедрять устаревшие традиционные схемы теплоснабжения с однотрубными системами отопления и элеваторными узлами, которые не нуждаются в обслуживании и регулировке, чем создавать себе дополнительную боль и финансовые затруднения, переходя к современным системам теплоснабжения с системами автоматики и регулирования. То есть построить объект с минимумом капитальных затрат, затем передать его, например, муниципалитету, который должен будет выискивать средства на эксплуатацию этого объекта. В результате крайним снова окажется потребитель (гражданин), который будет потреблять «ржавую» воду из системы теплоснабжения, мерзнуть зимой от недотопа и страдать от жары в переходный период (октябрь, апрель) при перетопе, осуществляя форточное регулирование, что приводит к простудным заболеваниям из-за сквозняков.

1.2. Создать специализированные организации, которые бы занимались всей цепочкой: от проектирования и монтажа до пусконаладки и обслуживания современных систем теплоснабжения. Для этой цели необходимо проводить целенаправленную работу по подготовке специалистов в области энергосбережения.

2. При проектировании этих систем необходимо тесно увязывать между собой все элементы систем теплоснабжения: отопление, вентиляцию и ГВС, учитывая не только требования СНиПов и СП, но и рассматривая их под углом с точки зрения эксплуатационников.

3. В отличие от устаревших, традиционных систем, современные системы нуждаются в обслуживании, которое могут осуществлять только специализированные организации, имеющие специальное оборудование и высококвалифицированных специалистов.

СПИСОК ЛИТЕРАТУРЫ

1. О практике применения двухтрубных систем отопления// Инженерные системы. АВОК. Северо-Запад, №3, 2002г.

2. Лебедев гидравлики систем ОВК// АВОК, №5, 2002г.

3. Иванов эксплуатации пластинчатых подогревателей в условиях г. Санкт-Петербурга// Новости теплоснабжения, №5, 2003г.

Министерство образования и науки

ГОУ ВПО «Братский государственный университет»

Факультет энергетики и автоматики

Кафедра промышленной теплоэнергетики

Реферат по дисциплине

«Теплогазоснабжение и вентиляция»

Современные системы теплоснабжения

Перспективы развития

Выполнила:

Ст группы ТГВ-08

Н.А. Снегирева

Руководитель:

Профессор, к.т.н., кафедры ПТЭ

С.А. Семенов

Братск 2010

Введение

1. Виды систем центрального отопления и принципы их действия

2. Сравнение современных систем теплоснабжения теплового гидродинамического насоса типа ТС1 и классического теплового насоса

3. Автономные системы теплоснабжения

4. Современные системы отопления и горячего водоснабжения в России

4.1 Системы водяного отопления

4.2 Газовое отопление

4.3 Воздушное отопление

4.4 Электрическое отопление

4.5 Трубопроводы

4.6 Котельное оборудование

5. Перспективы развития теплоснабжения в России

Заключение

Список использованной литературы

Введение

Проживая в умеренных широтах, где основная часть года холодная, необходимо обеспечить теплоснабжение зданий: жилых домов, офисов и других помещений. Теплоснабжение обеспечивает комфортное проживание, если это квартира или дом, продуктивную работу, если это офис или склад.

Сначала разберёмся, что же понимают под термином «Теплоснабжение». Теплоснабжение - это снабжение систем отопления здания горячей водой либо паром. Привычным источником теплоснабжения являются ТЭЦ и котельные. Существует два вида теплоснабжения зданий: централизованное и местное. При централизованном – снабжаются отдельные районы (промышленные или жилые). Для эффективной работы централизованной сети теплоснабжения, её строят, разделяя на уровни, работа каждого элемента заключается в выполнении одной задачи. С каждым уровнем задача элемента уменьшается. Местное теплоснабжение – снабжение теплом одного или несколько домов. Централизованные сети теплоснабжения имеют ряд преимуществ: снижение расходов топлива и сокращение затрат, использование низкосортного топлива, улучшение санитарного состояния жилых районов. Система централизованного теплоснабжения включает в себя источник тепловой энергии (ТЭЦ), тепловой сети и теплопотребляющих установок. ТЭЦ комбинированно вырабатывает тепло и энергию. Источниками местного теплоснабжения являются печи, котлы, водонагреватели.

Системы теплоснабжения отличаются различными температурами и давлением воды. Это зависит от требований потребителей и экономических соображений. При увеличении расстояния, на которое необходимо «передать» тепло, увеличиваются экономические затраты. В настоящее время расстояние передачи тепла измеряется десятками километров. Системы теплоснабжения делятся по объёму тепловых нагрузок. Системы отопления относят к сезонным, а системы горячего водоснабжения – к постоянным.


1. Виды систем центрального отопления и принципы их действия

Централизованное теплоснабжение состоит из трех взаимосвязанных и последовательно протекающих стадий: подготовки, транспортировки и использования теплоносителя. В соответствии с этими стадиями каждая система состоит из трех основных звеньев: источника теплоты(например, теплоэлектроцентрали или котельной), тепловых сетей(теплопроводов) и потребителей теплоты.

В децентрализованных системах теплоснабжения каждый потребитель имеет собственный источник теплоты.

Теплоносителями в системах центрального отопления могут быть вода, пар и воздух; соответствующие системы называют системами водяного, парового или воздушного отопления. Каждая из них имеет свои достоинства и недостатки. теплоснабжение центральный отопление

Достоинствами системы парового отопления являются значительно меньшие ее стоимость и расход металла по сравнению с другими системами: при конденсации 1 кг пара освобождается примерно 535 ккал, что в 15-20 раз больше количества тепла, выделяющегося при остывании 1 кг воды в нагревательных приборах, и поэтому паропроводы имеют значительно меньший диаметр, чем трубопроводы системы водяного отопления. В системах парового отопления меньше и поверхность нагревательных приборов. В помещениях, где люди пребывают периодически (производственные и общественные здания), система парового отопления даст возможность производить отопление с перерывами и при этом не возникает опасность замерзания теплоносителя с последующим разрывом трубопроводов.

Недостатками системы парового отопления являются ее низкие гигиенические качества: находящаяся в воздухе пыль пригорает на нагревательных приборах, нагретых до 100°С и более; регулировать теплоотдачу этих приборов невозможно и большую часть отопительного периода система должна работать с перерывами; наличие последних приводит к значительным колебаниям температуры воздуха в отапливаемых помещениях. Поэтому системы парового отопления устраивают только в тех зданиях, где люди пребывают периодически - в банях, прачечных, душевых павильонах, вокзалах и в клубах.

На системы воздушного отопления расходуется мало металла, и они могут одновременно с обогревом помещения выполнять его вентиляцию. Однако стоимость системы воздушного отопления жилых зданий выше, чем других систем.

Системы водяного отопления имеют большие стоимость и металлоемкость по сравнению с паровым отоплением, но они обладают высокими санитарно-гигиеническими качествами, обеспечивающими им широкое распространение. Их устраивают во всех жилых зданиях высотой более двух этажей, в общественных и большинстве производственных зданий. Централизованное регулирование теплоотдачи приборов в этой системе достигается путем изменения температуры поступающей в них воды.

Системы водяного отопления различают по способу перемещения воды и конструктивным решениям.

По способу перемещения воды различают системы с естественным и механическим (насосным) побуждением. Системы водяного отопления с естественным побуждением. Принципиальная схема такой системы состоит из котла (генератора тепла), подающего трубопровода, нагревательных приборов, обратного трубопровода и расширительного сосуда, Нагретая в котле вода поступает в нагревательные приборы, отдает в них часть своего тепла на компенсацию потерь тепла через наружные ограждения отапливаемого здания, затем возвращается в котел и далее циркуляция воды повторяется. Ее движение происходит под действием естественного побуждения, возникающего в системе при нагреве воды в котле.

Циркуляционное давление, создавшееся при работе системы, расходуется на преодоление сопротивления движению воды по трубам (от трения воды о стенки труб) и на местные сопротивления (в отводах, кранах, вентилях, нагревательных приборах, котлах, тройниках, крестовинах и т. д.).

Величина этих сопротивлений тем больше, чем выше скорость движения воды в трубах (если скорость увеличится в два раза, то сопротивление - в четыре раза, т. е. в квадратичной зависимости). В системах с естественным побуждением в зданиях небольшой этажности величина действующего давления невелика, и поэтому в них нельзя допускать больших скоростей движения воды в трубах; следовательно, диаметры труб должны быть большими. Система может оказаться экономически невыгодной. Поэтому применение систем с естественной циркуляцией допускается лишь для небольших зданий. Радиус действия таких систем не должен превышать 30 м, а величина к должна быть не менее 3 м.

При нагревании воды в системе объем ее увеличивается. Для вмещения этого дополнительного объема воды в системах отопления предусматривается расширительный сосуд 3; в системах с верхней разводкой и естественным побуждением он одновременно служит для удаления из них воздуха, выделяющегося из воды при ее нагреве в котлах.

Системы водяного отопления с насосным побуждением. Система отопления всегда заполнена водой и задачей насосов является создание давления, необходимого только для преодоления сопротивления движению воды. В таких системах одновременно действуют естественное и насосное побуждения; суммарное давление для двухтрубных систем с верхней разводкой, кгс/м2 (Па)

По экономическим соображениям обычно принимают в размере 5-10 кгс/м2 на 1 м (49-98 Па/м).

Достоинствами систем с насосным побуждением является снижение затрат на трубопроводы (их диаметр меньше, чем в системах с естественным побуждением) и возможность от одной котельной снабжать теплом ряд зданий.

Приборы описанной системы, расположенные на разных этажах здания, работают в разных условиях. Давление р2, обеспечивающее циркуляцию воды через прибор второго этажа, примерно в два раза больше, чем давление р1 для прибора нижнего этажа. В то же время суммарное сопротивление кольца трубопровода, проходящего через котел и прибор второго этажа, примерно равно сопротивлению кольца, проходящего через котел и прибор первого этажа. Поэтому первое кольцо будет работать с избыточным давлением, в прибор на втором этаже поступит больше воды, чем нужно по расчету, и соответственно уменьшится количество воды, проходящее через прибор на первом этаже.

В результате в отапливаемом данным прибором помещении второго этажа наступит перегрев, а в помещении первого этажа - недогрев. Для устранения этого явления применяют специальные методы расчета систем отопления, а также пользуются устанавливаемыми на горячей подводке к приборам кранами двойной регулировки. Если прикрыть эти краны у приборов на втором этаже, можно полностью погасить избыточное давление и тем самым отрегулировать расход воды по всем приборам, находящимся на одном стояке. Однако неравномерность распределения воды в системе, возможна и по отдельным стоякам. Объясняется это тем, что длина колец и, следовательно, суммарные их сопротивления в такой системе для всех стояков неодинаковы: наименьшее сопротивление имеет кольцо, проходящее через стояк (ближайший к главному стояку); наибольшее сопротивление имеет самое длинное кольцо, проходящее через стояк.

Современные системы отопления основаны на различных методах обогрева, что позволяет выбрать наиболее подходящий вариант для вашего загородного дома. Отработанные годами технологии обеспечат не только эффективный прогрев помещений, но также независимое регулирование температуры в каждой комнате, экономичность в расходе топлива, автоматическое и дистанционное управление.

Используемое сегодня в загородных домах отопление и теплоснабжение можно условно поделить на две группы - классическую и инновационную. Каждая группа достаточно широка, поэтому современное отопление дома позволяет выбрать наиболее эффективный для Вас вариант.

Классические системы отопления

К классическому относится котловое отопление с жидким теплоносителем. Забрав тепло от котла, теплоноситель греет радиаторы, которые в свою очередь отдают тепло в помещение методом воздушной конвекции. В качестве топлива котел может использовать газ, электричество, солярку или дрова.

Некоторые виды классического отопления получают более совершенные варианты, превращаясь в современные системы отопления. Например, электрическое отопление может быть прямым - энергия сразу преобразуется в тепло без применения котла, теплоносителя, сложной системы труб и радиаторов. Прямое электрическое инфракрасное отопление лишено недостатка, присущего стандартному конвекционному. Инфракрасные лучи греют физические тела, а не воздух. Нагретый воздух не скапливается под потолком, обогрев помещения происходит более быстро и равномерно. Система прямого электрического отопления требует наименьших затрат на монтаж и обслуживание.

Воздушное отопление также не использует промежуточный теплоноситель. Нагретый котлом воздух по воздуховодам сразу попадает в отапливаемое помещение. Одновременно с обогревом данный метод позволяет производить кондиционирование воздуха и вентиляцию помещений.

Современные системы отопления иногда не без успеха обращаются к прошлому. Например, инженеры смогли усовершенствовать морально устаревшее твердотопливное отопление. В пиролизном твердотопливном котле горение дров происходит по сложной схеме с образованием горючего пиролизного газа. Газ дожигается в отдельной топке, в результате общий КПД котла повышается.

Важнейшим показателем эффективности современного автономного отопления является возможность гибкого автоматического, программного и дистанционного управления. Наиболее просто и эффективно автоматизации поддается газовое, электрическое и воздушное отопление. Благодаря гибкому управлению, современные системы отопления легко встраивается в «умный дом», повышая общую комфортность проживания.

Инновационные системы отопления

Современные системы отопления неотделимы от поиска новых решений. К категории инновационных относятся все энергонезависимые технологии отопления, использующие возобновляемые источники энергии - солнечное излучение, энергию ветра и волн, тепловой насос и т.д. Сделать энергонезависимыми современные системы отопление дачи или коттеджа сегодня пока еще слишком дорого, технологически сложно и не всегда эффективно. Но с каждым годом технологии совершенствуются, приближая возможность организовать полностью независимое отопление. В настоящее время энергонезависимые технологии используются для организации дополнительного, резервного и аварийного отопления.

Какую бы систему отопления загородного дома вы не выбрали, сначала необходимо максимально снизить теплопотери здания. Для этого при проектировании и строительстве дома применяются специальные архитектурные решения, энергосберегающие материалы и технологии. Активно используются теплоаккумуляторы, которые позволяют запасать тепло ночью при пониженных тарифах на электричество.


Современное отопление загородного дома характеризуются не только эффективностью, экономичностью, но и высокими эксплуатационными характеристиками. Профессионально рассчитанная и смонтированная система отопления обладает длительным сроком службы, позволяет быстро обслуживать, ремонтировать и обновлять оборудование.